\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2017}\)

mọi ngườ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

helppppppppppppp meeeeeeee

5 tháng 8 2020

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2017}\)

=> \(\frac{x+y}{xy}=\frac{1}{2017}\)

=> 2017(x + y) - xy = 0

=> 2017x + 2017y - xy = 0

=> x(2017 - y) + 2017y = 0

=> x(2017 - y) + 2017y - 4068289 = - 4068289

=> -x(y - 2017) + 2017(y - 2017) = -4068289

=> (2017 - x).(y - 2017) = - 4068289

Ta có - 4068289 = -2017.2017 = -1.4068289

Lập bảng xét các trường học : 

2017-x1- 4068289- 140682892017-2017
y-2017- 406828914068289-1-20172017
x201640703062018-40662720 (loại)4034
y-40662722018407030620160 (loại)4034

Vậy các cặp (x;y) thỏa mãn là (2016;-4066272) ; (-4066272;2016) ; (4070306 ; 2018) ; (2018 ; 4070306) ; (4034 ; 4034)

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

16 tháng 4 2020

a) \(\frac{3}{4}x^5y^7\cdot\frac{-1}{2}xy^6\cdot\frac{-11}{9}x^2y^5\)

 \(=\left(\frac{3}{4}\cdot\frac{-1}{2}\cdot\frac{-11}{9}\right)\cdot\left(x^5y^7\right)\cdot\left(xy^6\right)\cdot\left(x^2y^5\right)\)

\(=\frac{11}{24}\cdot\left(x^5xx^2\right)\cdot\left(y^7y^6y^5\right)\)

\(=\frac{11}{24}x^8y^{18}\)

Bậc của đơn thức trên : 8 + 18 = 26

b) Thay x = 1 và y = -1 vào đơn thức ta được

\(\frac{11}{24}\cdot1^8\cdot\left(-1\right)^{18}=\frac{11}{24}\cdot1\cdot1=\frac{11}{24}\)

7 tháng 7 2016

Bài 1:

a)\(\left(2x+5\right)\left(6y-7\right)=13\)

=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}

  • Với 2x+5=13 =>x=4      =>6y-7=1 =>y=4/3 (loại)
  • Với 2x+5=-13 =>x=-9    =>6y-7=-1 =>y=1 (tm)
  • Với 2x+5=-1 =>x=-3      =>6y-7=-13 =>y=-1 (tm)
  • Với 2x+5=1  =>x=-2      =>6y-7=13=13 =>y=10/3 (loại)

Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)

2)xy+x+y=0

=>xy+x+y+1=1

=>(xy+x)+(y+1)=1

=>x(y+1)+(y+1)=1

=>(x+1)(y+1)=1

Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé

c)xy-x-y+1=0

=>(x-1)y-x+1=0

=>(x-1)y-x-0+1=0

=>(x-1)(y-1)=0

  • Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z) 
  • Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn

d và e bn phân tích ra tính tương tự

Bài 2:

a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)

=>4 chia hết x+1

=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp

b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)

=>2 chia hết x+3 

=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé

c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)

=>4 chia hết 2x+4

=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé

24 tháng 7 2016

a) x=4 ; y= 1

b) x=-8 ; y=1

24 tháng 7 2016

\(\frac{x}{4}-\frac{1}{2}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x}{4}-\frac{2}{4}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x-2}{4}=\frac{1}{y}\)

\(\Leftrightarrow\left(x-2\right).y=4.1\)

Vậy ta có bảng:

x-212-1-4
x341-2
y42-4-1

Vậy có 4 cặp số(x:y) tỏa mãn: (3;4);(4;2);(1;-4);(-2;-1)

13 tháng 9 2019

1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)

\(\Leftrightarrow x+y+z=xyz\)

Không mất tính tổng quát, giả sử: \(x\le y\le z\)

Lúc đó: \(x+y+z\le3z\)

\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

\(\Rightarrow xy\in\left\{1;2;3\right\}\)

* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\)\(\Rightarrow2+z=z\)(vô lí)

* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)

* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)\(\Rightarrow4+z=3z\Leftrightarrow z=2\)

Vậy x,y,z là các hoán vị của (1,2,3)

13 tháng 9 2019

\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)

\(\Leftrightarrow40=x\left(1-2y\right)\)

Đến đây bạn lập bảng ha !