\(\left|x-5\right|+\left|1-x\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Ta có : \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|\ge4\left(1\right)\)

Ta lại có : \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{1}{\left|y+1\right|+3}\le\frac{1}{3}\)hay \(\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\left(2\right)\)

Theo đề ra ta có : \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\left(3\right)\)

Từ (1) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi : 

\(\left(x-5\right)\left(1-x\right)=0\Leftrightarrow1\le x\le5\)

Từ (2) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :

\(\frac{12}{\left|y+1\right|+3}=4\Leftrightarrow\left|y+1\right|+3=3\)

\(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Vậy : \(x\in\left\{1;2;3;4;5\right\};y=\left(-1\right)\)

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

3 tháng 3 2019

Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)

\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)

\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)

11 tháng 3 2019

Thanks bn nha !! Nka

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5

7 tháng 8 2015

a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)<0\)

\(\Rightarrow x-\frac{2}{5}<0\)                      hoặc       \(x-\frac{2}{5}>0\)

      \(x+\frac{3}{7}>0\)                                     \(x+\frac{3}{7}<0\)

\(\Rightarrow x<\frac{2}{5}\)                               hoặc        \(x>\frac{2}{5}\)

      \(x>-\frac{3}{7}\)                                          \(x<-\frac{3}{7}\)

\(\Rightarrow-\frac{3}{7}                    hoặc         \(x\in rỗng\) 

vậy \(-\frac{3}{7}

b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)

\(\frac{-1}{12}\le x\le\frac{1}{4}\)

\(\frac{-1}{12}\le x\le\frac{3}{12}\)

\(\Rightarrow x=\frac{-1}{12};0;\frac{1}{12};\frac{2}{12};\frac{3}{12}\)

           

21 tháng 3 2019

a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)

\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)

hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)

V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)

b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)

            \(\frac{y}{3}=4\Leftrightarrow y=12\)

             \(\frac{z}{4}=4\Leftrightarrow z=16\)

V...

27 tháng 2 2019

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

=> \(\frac{5}{x}=\frac{1-2y}{8}\)

=> 5.8 = x(1 - 2y)

=> x(1 - 2y) = 40

=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}

Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}

Lập bảng :

  1 - 2y  1  -1   5   -5
     x  40  -40  8  -8
    y  0  1  -2  3

Vậy ....

27 tháng 2 2019

\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).

Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên 

Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)

\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)

Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!

11 tháng 2 2019

Bạn tham khảo ở đây nhé, mình làm rồi đấy: https://olm.vn/hoi-dap/detail/211418926066.html

16 tháng 11 2019
Cop bằng niềm tin hi vọng bn ạ