Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XONG RỒI ĐẤY BẠN
a) \(x^2-2x+2xy=3+4y\)
\(x^2-2x+2xy-4y=3\)
\(x\left(x-2\right)+2y\left(x-2\right)=3\)
\(\left(x-2\right)\left(x+2y\right)=3\)
\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)Ta có bảng giá trị:
\(x-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x+2y\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(3\) | \(1\) | \(5\) | \(-1\) |
\(y\) | \(0\) | \(-2\) | \(-2\) | \(0\) |
Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)
b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
Ta có: \(\left|2x-3y\right|\ge0\)
\(\left|5y-7z\right|\ge0\)
\(\left|x^2-y^2-2z^2-45\right|\ge0\)
\(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)
Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)
\(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)
\(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))
\(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)
Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)
=>x(2y+1)-3y-1,5=2,5
=>(y+0,5)(2x-3)=2,5
=>(2y+1)(2x-3)=5
=>\(\left(2x-3;2y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)
\(2xy+x-3y=4\)
\(\Leftrightarrow4xy+2x-6y=8\)
\(\Leftrightarrow4xy+2x-6y-3=5\)
\(\Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+1\right)=5\)
2x-3 | -5 | -1 | 1 | 5 |
2y+1 | -1 | -5 | 5 | 1 |
x | -1 | 1 | 2 | 4 |
y | -1 | -3 | 2 | 0 |
Vậy pt có các cặp nghiệm nguyên \(\left(x;y\right)=\left(-1;-1\right);\left(1;-3\right);\left(2;2\right);\left(4;0\right)\)
=>7x+y(2x-3)=7
=>7x-10,5+y(2x-3)=7-10,5
=>(x-1,5)(2y+7)=-3,5
=>(2x-3)(2y+7)=-7
=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)
a>x+y=5=> y=5-x
\(!x+1!+!3-x!\ge!x+1+3-x!=4\)
đẳng thức khi -1<=x<=3
=> xem lại đề
\(\Leftrightarrow-\frac{1}{6}< -\frac{1}{3}x+2< \frac{1}{6}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}x+2>-\frac{1}{6}\\-\frac{1}{3}x+2< \frac{1}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{13}{2}\\x>\frac{11}{2}\end{cases}\Leftrightarrow\frac{11}{2}< x< \frac{13}{2}}\)
vậy
Xét 2 Th nha :
Th1 : \(\left|-\frac{1}{3}x+2\right|< 0\)
PT trở thành : \(\frac{1}{3}x-2< \frac{1}{6}\)
\(\Rightarrow\frac{1}{3}x< \frac{13}{6}\)
\(\Rightarrow x< \frac{13}{2}\)
Th2 : \(\left|-\frac{1}{3}x+2\right|\ge0\)
\(\Rightarrow\frac{-1}{3}x+2< \frac{1}{6}\)
\(\Rightarrow\frac{-1}{3}x< \frac{-11}{6}\)
\(\Rightarrow x>\frac{11}{2}\)
Tự kết luận nha . Nhớ xét điều kiện nha
Lời giải:
Ta có:
$2xy-3y=8x+1$
$\Leftrightarrow y(2x-3)=8x+1$
Với mọi $x$ nguyên thì $2x-3\neq 0$. Do đó $y=\frac{8x+1}{2x-3}(*)$
Để $y$ nguyên thì $\frac{8x+1}{2x-3}\in\mathbb{Z}$
$\Rightarrow 8x+1\vdots 2x-3$
$\Leftrightarrow 4(2x-3)+13\vdots 2x-3$
$\Leftrightarrow 13\vdots 2x-3$
$\Rightarrow 2x-3\in\left\{\pm 1;\pm 13\right\}$
$\Rightarrow x\in\left\{1; 2; -5; 8\right\}$
Thay từng giá trị của $x$ vào $(*)$ ta thu được
$y\in\left\{-9; 17; 3; 5\right\}$ tương ứng
Vậy........
Thanks bạn nha