K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2019

Lời giải:

Ta có:

$2xy-3y=8x+1$

$\Leftrightarrow y(2x-3)=8x+1$

Với mọi $x$ nguyên thì $2x-3\neq 0$. Do đó $y=\frac{8x+1}{2x-3}(*)$

Để $y$ nguyên thì $\frac{8x+1}{2x-3}\in\mathbb{Z}$

$\Rightarrow 8x+1\vdots 2x-3$

$\Leftrightarrow 4(2x-3)+13\vdots 2x-3$

$\Leftrightarrow 13\vdots 2x-3$

$\Rightarrow 2x-3\in\left\{\pm 1;\pm 13\right\}$

$\Rightarrow x\in\left\{1; 2; -5; 8\right\}$

Thay từng giá trị của $x$ vào $(*)$ ta thu được

$y\in\left\{-9; 17; 3; 5\right\}$ tương ứng

Vậy........

29 tháng 11 2019

Thanks bạn nha

7 tháng 12 2016

2

4 tháng 3 2018

                       XONG RỒI ĐẤY BẠN

a) \(x^2-2x+2xy=3+4y\)

\(x^2-2x+2xy-4y=3\)

\(x\left(x-2\right)+2y\left(x-2\right)=3\)

\(\left(x-2\right)\left(x+2y\right)=3\)

\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)Ta có bảng giá trị:

\(x-2\)\(1\)\(-1\)\(3\)\(-3\)
\(x+2y\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(3\)\(1\)\(5\)\(-1\)
\(y\)\(0\)\(-2\)\(-2\)\(0\)

               Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)

b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

             Ta có: \(\left|2x-3y\right|\ge0\)

                        \(\left|5y-7z\right|\ge0\)

                        \(\left|x^2-y^2-2z^2-45\right|\ge0\)

                  \(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

            Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

               \(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)

               \(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)

               \(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)

                             Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

                           \(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)

                                                                                        \(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))

                 \(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)

                           Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)

                                   

4 tháng 3 2018

cảm ơn bạn nha Huỳnh Phước Mạnh

=>x(2y+1)-3y-1,5=2,5

=>(y+0,5)(2x-3)=2,5

=>(2y+1)(2x-3)=5

=>\(\left(2x-3;2y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)

NV
26 tháng 3 2023

\(2xy+x-3y=4\)

\(\Leftrightarrow4xy+2x-6y=8\)

\(\Leftrightarrow4xy+2x-6y-3=5\)

\(\Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=5\)

\(\Leftrightarrow\left(2x-3\right)\left(2y+1\right)=5\)

2x-3-5-115
2y+1-1-551
x-1124
y-1-320

Vậy pt có các cặp nghiệm nguyên \(\left(x;y\right)=\left(-1;-1\right);\left(1;-3\right);\left(2;2\right);\left(4;0\right)\)

=>7x+y(2x-3)=7

=>7x-10,5+y(2x-3)=7-10,5

=>(x-1,5)(2y+7)=-3,5

=>(2x-3)(2y+7)=-7

=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)

3 tháng 2 2017

a>x+y=5=> y=5-x

\(!x+1!+!3-x!\ge!x+1+3-x!=4\)

đẳng thức khi -1<=x<=3

=> xem lại đề 

28 tháng 9 2016

\(\Leftrightarrow-\frac{1}{6}< -\frac{1}{3}x+2< \frac{1}{6}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}x+2>-\frac{1}{6}\\-\frac{1}{3}x+2< \frac{1}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{13}{2}\\x>\frac{11}{2}\end{cases}\Leftrightarrow\frac{11}{2}< x< \frac{13}{2}}\)

vậy

Xét 2 Th nha :

 Th1 : \(\left|-\frac{1}{3}x+2\right|< 0\)

PT trở thành : \(\frac{1}{3}x-2< \frac{1}{6}\)

\(\Rightarrow\frac{1}{3}x< \frac{13}{6}\)

\(\Rightarrow x< \frac{13}{2}\)

Th2 : \(\left|-\frac{1}{3}x+2\right|\ge0\)

\(\Rightarrow\frac{-1}{3}x+2< \frac{1}{6}\)

\(\Rightarrow\frac{-1}{3}x< \frac{-11}{6}\)

\(\Rightarrow x>\frac{11}{2}\)

Tự kết luận nha . Nhớ xét điều kiện nha