Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{5}+1=\frac{1}{b-1}\Leftrightarrow\frac{a}{5}+1=\frac{1}{b-1}\Leftrightarrow\frac{a}{5}+\frac{5}{5}=\frac{1}{b-1}\)
Vì \(\frac{a}{5}\)và \(\frac{5}{5}\)đều có mẫu là 5.
\(\Rightarrow\frac{1}{b-1}\)phải có mẫu là 5
Để \(\frac{1}{b-1}\)có mẫu là 5. Thì b phải là:
5 + 1 = 6
Thế vào phân số. Ta có:
\(\frac{1}{n-1}\Leftrightarrow\frac{1}{6-1}\)
Thế vào biểu thức. Ta có:
\(\frac{a}{5}+\frac{5}{5}=\frac{1}{6-1}\Leftrightarrow\frac{a+5}{5}=\frac{1}{5}\)
Mà để \(\frac{a+5}{5}=\frac{1}{5}\)thì suy ra, a phải là : 1 - 5 = (-4)
\(\Rightarrow\orbr{\begin{cases}a=\left(-4\right)\\b=6\end{cases}}\)
Bài 1:
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\\ =\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1\)
Bài 2:
\(\frac{a}{5}+1=\frac{1}{b-1}\\ \Rightarrow \frac{a+5}{5}=\frac{1}{b-1}\\ \Rightarrow (a+5)(b-1)=5\)
Vì $a,b$ là số tự nhiên nên $a+5, b-1$ là số nguyên. Mà tích của chúng bằng 5 nên $a+5$ là ước của $5$ (1)
Vì $a$ là số tự nhiên nên $a+5$ là số tự nhiên và $a+5\geq 5$ (2)
Từ $(1); (2)\Rightarrow a+5=5$
$\Rightarrow a=0$
$b-1=\frac{5}{5}=1\Rightarrow b=2$
vì 39 chia hết cho 13 suy ra 39a chia hết cho 13
mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13
suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)
vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13
k cho mik nha