Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\) = \(\dfrac{x+y-z}{2+3-4}\) = \(\dfrac{5}{1}=5\)
\(x=5.2\) = 10; y = 3.5 = 15; z = 4.5 = 20
Đặt cái thứ nhất bằng k, rồi rút x;y;z theo k
thay vào cái thứ 2 rồi rút gọn tính dc k;
thay ngược lại tìm x;y;z
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{1.4-3.2+3.2}=\frac{36}{4}=9\)
\(\Rightarrow x=9.1=9\)
\(y=9.2=18\)
\(z=9.3=27\)
Ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tc của dãy tỉ số = nhau ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
\(=>\hept{\begin{cases}x=9.1=9\\y=9.2=18\\z=9.3=27\end{cases}}\)
Vậy x=9 , y=18,z=27
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4\cdot1-3\cdot2+2\cdot3}=\frac{36}{4}=9\)
x/1 = 9 => x =1 x 9 = 9
y/2 = 9 => y = 9 x 2 = 18
z/3 = 9 => z = 3 x 9 = 27
\(x=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\) và 4a - 3y + 2z = 36.
Áp dụng dãy tỉ số bằng nhau :
\(x=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2x}{4-6+6}=\frac{36}{4}=9\)
=> x = 9 ; y = 9.2 = 18 ; z = 9.3 = 27
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
Bai 1: tim x,y,z biet ranga,$\frac{x}{1}$x1 =$\frac{y}{2}$y2 =$\frac{z}{3}$z3 va 4x -3y +2z =36b,x : y: z=3 :5 :(-2) va 5x -y +3z =124c,2x= 3y, 5y= 7z va 3x- 7y+ 5z = -30
bạn bấm vào đây nhé
ta có:
x:y:z=3:5:(-2) =>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-9}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}-\frac{y}{5}+\frac{3z}{-9}=\frac{5x-y+3z}{15-5+\left(-9\right)}=\frac{124}{1}=124\)
vậy:
x/3=124 =>x=124.3=372
y/5=124 =>y=124.5=620
z/-2=124 =>z=124.(-2)=-248
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
x=9;
y=18;
z=27
Ta có : \(x=\frac{y}{2}=\frac{z}{3}\)=>\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính xhaats dãy tỉ số bằng nhau,ta được :
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)\(=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
+) x=9
+) \(\frac{y}{2}=9\)=> y = 18
+) \(\frac{z}{3}=9\)=>z=27