Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
abab = ab .101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
còn lại tự làm
mik làm có đúng ko ?
x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2-2xy-2yz-2xz=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x=y=z
Thay x=y=z vào x2014+y2014+z2014=32015 ta được:
3.x3014=3.32014
=>x2014=32014
=>x=3 hoặc x=-3
Vậy x=y=z=3 hoặc x=y=z=-3
\(x^2+y^2+z^2=xy+xz+yz\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)
\(x^{2014}+y^{2014}+z^{2014}=3\Rightarrow3x^{2014}=3\Rightarrow x^{2014}=1\)
\(\Rightarrow x=y=z=\pm1\)
- Nếu \(x=y=z=1\Rightarrow L=1+1+1=3\)
- Nếu \(x=y=z=-1\Rightarrow L=-1+1-1=-1\)
giải được bài xyz thôi, bài xy làm sơ thấy lằng nhằng quá nên thôi, làm sau nhá
x2 + y2 + z2 = xy + yz + xz
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2 xz = 0
<=> (x - y)2 + (y - z)2 + (x - z)2 = 0
<=> x = y = z (1)
x2014 + y2014 + z2014 = 32015 (2)
thay (1) vào (2) được
x2014 + x2014 + x2014 = 32015
<=> 3x2014 = 32015
<=> x2014 = 32014
<=> \(\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
mà x = y = z
=> \(\left[\begin{matrix}x=y=z=3\\x=y=z=-3\end{matrix}\right.\)
8h trôi qua như vậy quá muộn rồi!!..
\(x^2=y^2+2y+13\) (1) \(\Leftrightarrow x^2=\left(y+1\right)^2+12\Leftrightarrow x^2-z^2=12\)
Hệ nghiệm nguyên(*) \(\left\{\begin{matrix}x-z=a\\x+z=b\end{matrix}\right.\) với x>0; z>1;a,b thuộc Z và a.b=12
Bạn có thể giải tất cả => tìm ra nghiêm
Lập luận giảm bớt hệ vô nghiệm trước
Từ (*) công lại ta có: \(2x=\left(a+b\right)\Rightarrow x=\frac{a+b}{2}\)
x nguyên =>vậy a+b phải chẵn, x>0 =>cặp (2,6) duy nhất
\(x=\frac{2+6}{2}=4\) \(\Rightarrow z=2\Rightarrow y=1\)
Kết luận: Nghiệm(1) là: (x,y)=(4,1)
Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)
<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0
<=> x=y=z
=> 3x^2014=3
=>x=y=z=1
=>P= 1^25+1^4+1^2015 = 3
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow x=y=z\)
Ta lại có : \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)
\(\Rightarrow3x^{2009}=3^{2010}\Rightarrow x^{2009}=3^{2009}\Rightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy .............
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow x=y=z\)
Mà \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\Rightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)
Vậy \(x=y=z=3\)
x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2-2xy-2yz-2xz=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x=y=z
Thay x=y=z vào x2014+y2014+z2014=32015 ta được:
3.x3014=3.32014
=>x2014=32014
=>x=3 hoặc x=-3
Vậy x=y=z=3 hoặc x=y=z=-3
ko biết duyệt nha