\(3x^2-2y^2-5xy+x-2y-7=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(3x^2-2y^2-5xy+x-2y-7=0\\ \Leftrightarrow\left(3x^2-6xy\right)+\left(xy-2y^2\right)+\left(x-2y\right)=7\\ \Leftrightarrow3x\left(x-2y\right)+y\left(x-2y\right)+\left(x-2y\right)=7\\ \Leftrightarrow\left(x-2y\right)\left(3x+y+1\right)=7=\left(-1\right)\left(-7\right)=1\cdot7\)

Từ đó liệt kê ra nhé

10 tháng 3 2020

\(2x^2+2y^2+3x-6y=5xy-7\)

\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)

\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)

\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)

vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)

Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7

Tới đây bạn tự làm nhé

NV
11 tháng 2 2020

\(3x^2-\left(5y-1\right)x-2y^2-2y-7=0\)

\(\Delta=\left(5y-1\right)^2+12\left(2y^2+2y+7\right)\)

\(=49y^2+14y+85=\left(7y+1\right)^2+84\)

Để x;y nguyên \(\Rightarrow\left(7y+1\right)^2+84=k^2\)

\(\Rightarrow k^2-\left(7y+1\right)^2=84\Leftrightarrow\left(k-7y-1\right)\left(k+7y+1\right)=84\)

\(\Rightarrow...\)

12 tháng 10 2019

ê biết câu 3a không bày với Hà

13 tháng 10 2019

1) \(y^4=x\left(2y^2-1\right)\)\(\Leftrightarrow\)\(x=\frac{y^4}{2y^2-1}\) \(\left(2y^2-1\ne0\right)\)

x nguyên => 4x nguyên => \(\frac{4y^4}{2y^2-1}=\frac{4y^4-1}{2y^2-1}+\frac{1}{2y^2-1}=2y^2+\frac{1}{2y^2-1}+1\)

=> \(1⋮\left(2y^2-1\right)\) => \(\left(2y^2-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}\) => \(y\in\left\{-1;0;1\right\}\)

cặp số nguyên \(\left(x;y\right)=\left\{\left(-1;1\right);\left(0;0\right);\left(1;1\right)\right\}\)

2) \(M=\frac{x^2+xy+y^2+12}{x+y}=\frac{x^2+2xy+y^2}{x+y}-\frac{xy}{x+y}+\frac{12}{x+y}\)

\(\ge x+y-\frac{\frac{\left(x+y\right)^2}{4}}{x+y}+\frac{12}{x+y}=\frac{3\left(x+y\right)}{4}+\frac{12}{x+y}\ge6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\\frac{3\left(x+y\right)}{4}=\frac{12}{x+y}\end{cases}}\Leftrightarrow x=y=2\)