Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số nguyên tố cần tìm là p, k và r là thương và số dư của phép chia p:42.
Do đó p=42k+r (0<r<42) r là hợp số suy ra p=2.3.7.k+r ( k thuộc N*)
VÌ p là số nguyên tố nên r không chia hết cho 2,3,7.Mà r <42 và r là hợp số do đó r=2
Ta có:p=42k+25 (k thuộc N*) p<200 nên xảy ra các khả năng:
Nếu k=1 thì p=42.1+25=67 thuộc P,chọn.
Nếu k=2 thì p=42.2+25=109 thuộc P,chọn.
Nếu k=3 thì p=42.3+25=151 thuộc p,chọn.
Nếu k=4 thì p=42.4+25=193 thuộc P,chọn.
Nếu k lớn hơn hoặc bằng 5 thì p>200,không thỏa mãn.
Vậy các số nguyên tố thỏa mãn đầu bài là 67,109,151,193
Gọi số nguyên tố cần tìm là p, k và r là thương và số dư của phép chia p:42.
Do đó p=42k+r (0<r<42) r là hợp số suy ra p=2.3.7.k+r ( k thuộc N*)
VÌ p là số nguyên tố nên r không chia hết cho 2,3,7.Mà r <42 và r là hợp số do đó r=2
Ta có:p=42k+25 (k thuộc N*) p<200 nên xảy ra các khả năng:
Nếu k=1 thì p=42.1+25=67 thuộc P,chọn.
Nếu k=2 thì p=42.2+25=109 thuộc P,chọn.
Nếu k=3 thì p=42.3+25=151 thuộc p,chọn.
Nếu k=4 thì p=42.4+25=193 thuộc P,chọn.
Nếu k lớn hơn hoặc bằng 5 thì p>200,không thỏa mãn.
Vậy các số nguyên tố thỏa mãn đầu bài là 67,109,151,193
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
gọi số đó là a
( a+1 ) chia hết cho 2,3,4,5,6,7 mà số nhỏ nhất chia hết cho 2,3,4,5,6,7 là 420 vì số nhỏ nhất chia hết 2,3,4,5,6 là 60 => 60 x 7 = 420
vậy (a+1) = 420 => a = 420 - 1 = \(419\)
nha bn
Chia 4 dư 1 => Số đó là số lẻ
Chia 25 dư 3 thì tận cùng sẽ là 3 . Có thể nằm trong các số: 53, 103, 153 (Nhỏ hơn 200).
Xét 3 số trên thấy chỉ có 53 và 153 là chia 4 dư 1
=> \(x\in A=\left\{53;153\right\}\)
vì số đó chia cho 4 dư 1, chia 25 dư 3 nên khi thêm 47 đơn vị vào số đó thì được số mới chia hết cho cả 4 và 25
BC(4,25) ={100; 200; 300;400.....;}
số cần tìm ϵ { 53; 153; 253; 353.....;}
vì số cần tìm < 200 nên số cần tìm là: 53; 153