Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Gọi UCLN(5n+14 và n+2)=d
Suy ra :5n+14 chia hết cho d
:n+2 chia hết cho d
Suy ra:5n+14 chia hết cho d
:5n+10 chi hết cho d
Suy ra:(5n+14)-(5n+10) chia hết cho d
Suy ra:=5n+14-5n-10 chia hết cho d
Suy ra:= 1 chia hết cho d
Suy ra: d thuộc Ư(1)
Suy ra: d = 1
Vậy ƯCLN(5n+14 và n+2)=1 nên 5n+14 chia hết cho n+2
Bài làm
Gọi UCLN(5n+14 và n+2)=d
Suy ra :5n+14 chia hết cho d
:n+2 chia hết cho d
Suy ra:5n+14 chia hết cho d
:5n+10 chi hết cho d
Suy ra:(5n+14)-(5n+10) chia hết cho d
Suy ra:=5n+14-5n-10 chia hết cho d
Suy ra:= 1 chia hết cho d
Suy ra: d thuộc Ư(1)
Suy ra: d = 1
Vậy ƯCLN(5n+14 và n+2)=1 nên 5n+14 chia hết cho n+2
Bài làm
Gọi UCLN(5n+14 và n+2)=d
Suy ra :5n+14 chia hết cho d
:n+2 chia hết cho d
Suy ra:5n+14 chia hết cho d
:5n+10 chi hết cho d
Suy ra:(5n+14)-(5n+10) chia hết cho d
Suy ra:=5n+14-5n-10 chia hết cho d
Suy ra:= 1 chia hết cho d
Suy ra: d thuộc Ư(1)
Suy ra: d = 1
Vậy ƯCLN(5n+14 và n+2)=1 nên 5n+14 chia hết cho n+2
Ủa sao lệnh tex ko lên nhỉ ??
Sửa lại : \(a_1,a_2,....,a_n\inℝ\)
a, Chắc xét hàm số tổng quát!
Xét hàm số tổng quát:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}}=\dfrac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\dfrac{1}{k\left(k+1\right)}\right)\)
\(=\sqrt{k}\left[\sqrt{\dfrac{1}{k}}^2-\sqrt{\dfrac{1}{k+1}}^2\right]\)
\(=\sqrt{k}\left(\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(=\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
Vì \(\dfrac{\sqrt{k}}{\sqrt{k+1}}< 1\Rightarrow1+\dfrac{\sqrt{k}}{\sqrt{k+1}}< 2\)
Do đó \(\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)< 2.\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(\Rightarrow\dfrac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\) (1)
Áp dụng điểu (1) ta được:
\(\dfrac{1}{2}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\right)\)
\(\dfrac{1}{3\sqrt{2}}< 2\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)\)
...................................
\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Với mọi giá trị của \(n>0\) ta luôn có: \(\sqrt{n+1}>0\)
Do đó \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) (đpcm)
Đặt \(\sqrt{n+2}+\sqrt{n^3+1}=a\in N\)
\(\Leftrightarrow n+2+n^3+1+2\sqrt{\left(n+2\right)\left(n^3+1\right)}=a^2\)
Vì n, a là số tự nhiên nên \(\left(n+2\right)\left(n^3+1\right)=x^2\in N\)
\(\Leftrightarrow n^4+2n^3+n+2=x^2\)
\(\Leftrightarrow x^2-\left(n^2+n\right)^2=2\)
\(\Leftrightarrow\left(x-n^2-n\right)\left(x+n^2+n\right)=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-n^2-n=1\\x+n^2+n=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-n^2-n=2\\x+n^2+n=1\end{matrix}\right.\end{matrix}\right.\)
vô nghiệm nhé