\(\left(n^3+1\right)\)là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Vì \(n^3\) là lập phương của 1 số tự nhiên

\(\Leftrightarrow n^3+1\) là bình phương của 1 số tự nhiên

\(\Leftrightarrow\orbr{\begin{cases}n^3=0\\n^3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

Vậy n=0 hoặc n=1 thì \(\left(n^3+1\right)\) là số chính phương

5 tháng 5 2017

DO N^3 LÀ LẬP PHƯƠNG CỦA 1 SỐ TỰ NHIÊN

    N^3 + 1 LÀ BÌNH PHƯƠNG CỦA 1 SỐ TỰ NHIÊN

=> N^3 = 0 .HOẶC -1

=> N = 0 HOẶC 1

21 tháng 11 2016

Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)

Đặt \(n^2+3=t\)

=> \(A=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

=> A là số chính phương

Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
 

 

18 tháng 3 2018

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.

TH1: n+1=1 => n=0 => n+3=3 (t/m)

TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)

=> n=0.

b, A không tối giản => ƯCLN(n+3;n-5) >1

=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

18 tháng 3 2018

Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik

16 tháng 6 2015

Đặt  B = 10n + 10n-1 + ...+ 10 + 1

=> 10.B = 10n+1 + 10n + ...+ 102 + 10

=> 10B - B = 10n+1 -1

=> 9B = 10n+1 - 1

Ta có: 9A = 9B. (10n+1 + 5) + 9 = (10n+1 -1).(10n+1 + 5) + 9

9A = (10n+1)2 + 5.10n+1 - 10n+1 - 5 + 9 = (10n+1)2 + 4.10n+1 + 4

=  (10n+1 + 2)2

=> A = \(\left(\frac{10^{n+1}+2}{3}\right)^2\)

Vì (10n+1 + 2 ) chia hết cho 3 nên \(\left(\frac{10^{n+1}+2}{3}\right)^2\) là số chính phương

=> A là số chính phương

16 tháng 6 2015

Ta có công thức: an-1=(a-1)(an-1+an-2+...+a+1)

Từ đó suy ra:

A=\(\frac{10^{n+1}-1}{9}\left(10^{n+1}+5\right)+1\)

Đặt 10n+1=B => A=\(\frac{\left(B-1\right)}{9}\left(B+5\right)+1\)

=> A=\(\frac{\left(B-1\right)\left(B+5\right)+9}{9}\)

       = \(\frac{B^2+4B+4}{9}\)

       = \(\left(\frac{B+2}{3}\right)^2\)Hay \(\left(\frac{100...02_{\left\{n\right\}}}{3}\right)^2\)

       = 333...342

Vậy A là số chính phương. (1)

Gỉa sử A=m3, m thuộc N

=> 333...34{n số 3} = m3

=> m3 chia hết cho 2

=> m chia hết cho 2

=>  m3 chia hết cho 8          Hay         (2.1666..67{n-1 số 6} )2 chia hết cho 8

=>4.1666..672{n-1 số 6} chia hết cho 8   

=>1666..67chia hết cho 2 (Vô Lý)

Vậy A ko thể là lập phương của 1 số tự nhiên.       (2)

Từ (1) và (2) => ĐPCM

 

 

29 tháng 3 2020

Do n + 1 là SCP nên khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1

Nếu \(n+1⋮3\)thì \(n\equiv2\left(mod3\right)\)

\(\Rightarrow2n+1\equiv2\left(mod3\right)\)(Vô lý)

Do đó n + 1 chia 3 dư 1

\(\Rightarrow n⋮3\)

Do 2n + 1 là SCP lẻ nên 2n + 1 chia 8 dư 1 

\(\Rightarrow2n⋮8\)

\(\Rightarrow n⋮4\)

Vì \(n⋮4\)nên n + 1 chia 8 dư 1

\(\Rightarrow n⋮8\)

Vì \(n⋮8\)và \(n⋮3\)và (3,8) = 1

\(\Rightarrow n⋮24\)

Với n = 24 thi 5n + 1, n + 1, 2n + 1 đề là các SCP

Vậy n = 24

Lớp 6a3 đội tuyển toán dk

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

28 tháng 10 2016

\(abc=\left(n^2-1\right)-\left(n-2\right)^2\)

\(\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)

\(99a-99c=4n-5\)

\(99\left(a-c\right)=4n-5\)

Ta có : 99(a-c) chia hết cho 99 nên (4n-5) chia hết cho 99 (1)

* Mặt khác thì : \(abc=n^2-1\)

\(=>n^2=abc+1\)

=> 101 lớn hơn hoặc bằng \(n^2\) bé hơn 1000

=> 100 < 101 < \(n^2\) <1000<1024

=> \(10^2< n^2< 32^2\)

=> 10 < n < 32

=> 40 < 4n < 128

=> 35 < 4n-5< 123 (2)

Từ (1)(2) => 4n - 5 = 99

=> 4n = 104

=> n = 26

Vậy \(abc=n^2-1=26^2-1=675\)