Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)
ta thấy k-n và k+n cùng tính chẵn lẻ
Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2
mà 2002=2.7.11.13
Vậy không tồn tại n thuộc N để n2+2002 là SCP
p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='
\(\text{Giải}\)
\(+,n=1\Rightarrow1!+2!+.....+n!=1=1^2\left(tm\right)\)
\(+,n=2\Rightarrow1!+2!+......+n!=3\left(loai\right)\)
\(+,n=3\Rightarrow1!+2!+......+n!=9=3^2\left(tm\right)\)
\(+,n=4\Rightarrow1!+2!+....+n!=33\left(loai\right)\)
\(+,n\ge5\Rightarrow n!=\left(...0\right)\Rightarrow1!+2!+....+n!=33+\left(...0\right)+\left(....0\right)+...+\left(...0\right)=\left(....3\right)\left(loai\right)\)
\(\text{Vậy:n=1 và n=3 thỏa mãn đề bài}\)
Giả sử n\(\ge\)3 thì \(2^n+1\)và 2\(2^n-1\) ko chia hết cho 3 vì là số nguyên tố .
Ta có \(2^n+1;2^n;2^n-1\)là 3 số tự nhiên liên tiếp nên sẽ có 1 số chia hết cho 3 mà \(2^n+1\)và \(2^n-1\)ko chia hết cho 3 nên 2n chia hết cho 3 . Vô lý vậy n<3 . Từ đó thế n=2 , n=1 , n=0 vào rồi thử xem thỏa mãn hay ko rồi ra
a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)
Xét m = 0 thì \(n^2+2n+12=0\) (1)
Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)
Do \(\Delta< 0\) nên (1) vô nghiệm (*)
Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)
Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)
Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)
Do \(\Delta< 0\) nên (2) vô nghiệm (**)
Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)
Học lớp 6 thì vào mục lớp 7 làm cái quái j!
Giả sử n2 + 2020 = m2 (n thuộc tập hợp N)
m2 - n2 = 2020
Rồi, tới chỗ này thì lấy cái công thức hằng đẳng thức quen quen j đó mà nó ghi trên thước hay trong tập hoài đó ra.
<=> (m+n)(m-n) = 2020 = 2.2.5.101 (thừa số nguyên tố)
Đến đây thì thua, chỉ còn biết thử-chọn mấy cái tích (m+n) với (m-n) sao cho nó ra 2020 thôi, sao đó dùng tổng-hiệu mà ra m và n. Thử chọn số nào thì cái phần thừa số nguyên tố nói rồi đó.
Nếu m + n = 2020; m - n = 1 thì:
m = (2020 + 1) : 2 = 1010,5
n = 2020 - 1010,5 = 1009,5 (Loại)
Nếu m + n = 1010; m - n = 2 thì:
<=> m = 506
<=> n = 504
Nếu m + n = 505; m - n = 4 thì:
<=> n = 250,5 (Loại)
Nếu m + n = 404; m - n = 5 thì:
<=> n = 199,5 (Loại)
Nếu m + n = 202; m - n = 10 thì:
<=> n = 1005
Nếu m + n = 101; m - n = 20 thì:
<=> n = 40,5 (Loại)
Nếu m + n = -1; m - n = -2020 thì:
<=> n = 1009,5 (Loại)
...
Cứ thử tiếp vậy đó rồi ra kết quả là:
n = 504; 1005; 96
Chịu! Tui mới học lớp 6 thôi mà!
hi hi