\(|n-2018|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\)Mk ko ghi lại đề đâu nha

\(Xet2TH:\left(+\right)n\ge2018\Rightarrow|n-2018|=n-2018\Rightarrow2018^m+4035=2n-2018\)

\(2n-2018\left(chẵn\right)\Rightarrow2018^mlẻ\Rightarrow m=0\Rightarrow2n-2018=4036\Rightarrow n=3027\)

\(\left(+\right)n< 2018\Rightarrow|n-2018|=2018-n\Rightarrow2018^m+4035=2018.Mà:2018^m\ge0\left(loại\right)\)

\(Vậy:m=0;n=3027\)

29 tháng 12 2018

Ta có: 2m + 2019 = |n-2018| + n - 2018

 + Nếu n < 2018 thì |n-2018| = -n + 2018

 Suy ra: 2m + 2019 =  -n + 2018 + n - 2018 =  0 (loại vì \(m\inℕ\))

 + Nếu \(n\ge2018\)thì |n-2018| = n - 2018

 Suy ra: 2m + 2019 = (n - 2018) + (n - 2018) = 2(n - 2018)

  Suy ra: 2m là số lẻ => m=0 (t/m)

 Khi đó: 20 + 2019 = 2(n - 2018) 

             1 + 2019 = 2n - 2018

              2020 + 2018 = 2n

             4038              = 2n

               n = 2019 (t/m)

Vậy m=0; n=2019

4 tháng 4 2017

k em nha em mới lớp 5

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

Câu 2: 

Ta có: \(x^2=1\)

=>x=1 hoặc x=-1

=>x là số hữu tỉ