Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2018^n-1964^n⋮3\)
\(2032^n-1984^n⋮3\)
nên An chia hết cho 3
Mà \(2018^n-1984^n⋮17\)
\(2032^n-1964^n⋮17\)
nên An chia hết cho 17
Vậy A chia hết cho 51
b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)
và An đồng dư 2^n + 7^n -2^n-4^n (mod9)
Vậy An chia hết cho 45 khi n có dạng 12k
Câu 1:
ĐK: $x\neq -1$
PT $\Leftrightarrow (x-\frac{x}{x+1})^2+\frac{2x^2}{x+1}=\frac{5}{4}$
$\Leftrightarrow (\frac{x^2}{x+1})^2+\frac{2x^2}{x+1}=\frac{5}{4}$
Đặt $\frac{x^2}{x+1}=a$ thì pt trở thành:
$a^2+2a=\frac{5}{4}$
$\Leftrightarrow 4a^2+8a-5=0$
$\Leftrightarrow (2a-1)(2a+5)=0$
$\Rightarrow a=\frac{1}{2}$ hoặc $a=\frac{-5}{2}$
Nếu $a=\frac{1}{2}\Leftrightarrow \frac{x^2}{x+1}=\frac{1}{2}$
$\Rightarrow 2x^2=x+1\Leftrightarrow 2x^2-x-1=0\Leftrightarrow (x-1)(2x+1)=0$
$\Rightarrow x=1$ hoặc $x=\frac{-1}{2}$
Nếu $a=\frac{-5}{2}\Leftrightarrow \frac{x^2}{x+1}=\frac{-5}{2}$
$\Rightarrow 2x^2+5x+5=0$
$2(x+\frac{5}{4})^2=-\frac{15}{8}< 0$ (vô lý)
Vậy.......
Câu 2:
Đặt $n^2+5n+12=a^2$ với $a\in\mathbb{N}$
$\Leftrightarrow 4n^2+20n+48=4a^2$
$\Leftrightarrow (2n+5)^2+23=(2a)^2$
$\Leftrightarrow 23=(2a-2n-5)(2a+2n+5)$
Vì $2n+2n+5\geq 5$ với mọi số tự nhiên $a,n$ nên:
$2a-2n-5=1; 2a+2n+5=23$
$\Rightarrow n=3$
\(\left(a+b+c\right)\left(ab+ac+bc\right)=\left(a+b+c\right)\left(ab+ac+bc+c^2-c^2\right)\)
\(=\left(a+b+c\right)\left(\left(a+c\right)\left(b+c\right)-c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2\left(a+b\right)+c\left(a+c\right)\left(b+c\right)-c^3\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2a-c^2b+abc+c^2a+c^2b+c^3-c^3\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)+abc=\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018\)
\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018=2018\)
\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Ta có:
\(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)
\(A=\left(b^2c+abc\right)\left(c^2a+abc\right)\left(a^2b+abc\right)\)
\(A=bc\left(a+b\right)ac\left(b+c\right)ab\left(a+c\right)\)
\(A=\left(abc\right)^2\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=2018^2.0=0\)
Vì \(m;n\in N\) nên ta xét như sau:
Với \(m=0\) thì: \(2^m+2017=2018\)
Khi đó: \(\left|n-2018\right|+n-2018=2018\)
\(\Leftrightarrow\left[{}\begin{matrix}n-2018+n-2018=2018\left(n\ge2018\right)\\2018-n+n-2018=2018\left(n< 2018\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2n-4036=2018\Leftrightarrow n=3027\\0=2018\left(loai\right)\end{matrix}\right.\)
Với \(m>0\) thì: \(2^m+2017\) luôn lẻ. Mặt khác: \(\left|n-2018\right|\) và \(n-2018\) cùng tính chẵn lẻ nên: \(\left|n-2018\right|+n-2018\) chẵn. Suy ra không có bộ số \(m;n\) thỏa mãn.
Vậy \(\left(m;n\right)=\left(0;3027\right)\)