K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

Theo giả thiết ta có \(\left(a_1^2+\cdots+a_{2015}^2\right)-2\cdot2015\cdot\left(a_1+\cdots+a_{2015}\right)\le2015^3-2\cdot2015^3+1=1-2015^3\), do vậy mà \(\left(a_1-2015\right)^2+\cdots+\left(a_{2015}-2015\right)^2\le1\), vì các số bên vế trái đều là các số tự nhiên nên trong các số này có 2014 số bằng 0 số còn lại bằng 0 hoặc bằng 1. Thành thử trong 2015 số tự nhiên \(a_1,\ldots,a_{2015}\) có \(2014\) số bằng \(2015\) số còn lại có thể bằng \(2015\), có thể \(2014\)  hoặc \(2016\). Tuy nhiên hai trường hợp sau không thoả mãn. Vậy tất cả các số bằng \(2015\)

10 tháng 7 2015

Ta có: 

\(\left(a_n-\frac{1}{2010}\right)^2\ge0\Rightarrow a_n^2-\frac{2}{2010}a_n+\frac{1}{2010^2}\ge0\)

\(\Rightarrow a_n^2\ge\frac{2}{2010}a_n-\frac{1}{2010^2}\)

\(\Rightarrow a_1^2+a_2^2+...+a_{2010}^2\ge\frac{2}{2010}\left(a_1+a_2+...+a_{2010}\right)-2010.\frac{1}{2010^2}\)

\(=\frac{2}{2010}-\frac{1}{2010}=\frac{1}{2010}\)

Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{2010}\)

13 tháng 9 2016

Ta có 

a21 + \(\frac{1}{1999^2}\)\(\ge\frac{2a_1}{1999}\)

.............

a21999 + \(\frac{1}{1999^2}\ge2\frac{a_{1999}}{1999}\)

Cộng vế theo vế ta được

a21 + a22 + ...+ a21999 + \(\frac{1}{1999}\)\(\ge\)(a1 + a+ ...+ a1999 ) \(\frac{2}{1999}\)\(\frac{2}{1999}\)

<=>  a21 + a22 + ...+ a21999 \(\ge\frac{1}{1999}\)

15 tháng 6 2019

bài 2 

Cộng 2 vế của -4038.(1) + (2) ta được

\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)

                                                                       \(\le2019^3+1-2019.2019^2-2019.2019^2\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)

\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)

\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)

Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)

\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)

*Nếu A = 0 

Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)

Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)

*Nếu A = 1 

\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)

Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0

Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019

Giả sử \(a_1=a_2=...=a_{2018}=2019\)

Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)

               \(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)

Thử lại...(tự thử nhé)

Vậy...

                                                      

15 tháng 6 2019

Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4

Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3

Mà n là số tự nhiên nên n = 1

NV
22 tháng 4 2019

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-7\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=3^2+2.7=23\)

\(B^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2+4.7=37\Rightarrow B=\sqrt{37}\)

\(C=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{3-2}{-7-3+1}=-\frac{1}{9}\)

\(D=10x_1x_2+3\left(x^2_1+x^2_2\right)=4x_1x_2+3\left(x_1+x_2\right)^2=-28+27=-1\)

\(E=\left(x_1+x_2\right)\left(x_1^2+x_2^2-3x_1x_2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=90\)

\(F=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2=431\)