\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\\ \)

(a;b;c) =(1;3;2)

25 tháng 2 2017

\(\frac{a}{3}+\frac{b}{4}=\frac{a+b}{3+4}\Leftrightarrow\frac{4a+3b}{12}=\frac{a+b}{7}\Leftrightarrow28a+21b=12a+12b\)

\(\Leftrightarrow\left(16a+9b\right)+\left(12a+12b\right)=12a+12b\)

\(\Leftrightarrow16a+9b=0\)

Vì \(16a\ge0;9b\ge0\) ( vì a;b là số TN )

=> \(16a+9b\ge0\)

Dấu "=" xảy ra <=> a = b = 0

b) \(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)

\(\Rightarrow a=1;b=3;c=2\)

30 tháng 3 2016

a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)

b/3> hoặc = b/5 ( xảy randaaus bằng với a=0

Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0

12 tháng 2 2017

tìm các số tự nhiên a,b,c sao cho a^2 <=b;b^2<=c;c^2<=a

31 tháng 3 2018

\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)

\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}\)

\(=5+\frac{1}{1+\frac{2}{7}}\)

\(=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}\)

\(=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)

\(\Rightarrow a=1,b=3,c=2\)

29 tháng 4 2018

huyen lam chuan day

20 tháng 4 2018

=>1/a+1/b+1/c=52/9-5=7/9=1/9/7

=>a+1/b+1/c=9/7

Vì 1/b+1/c <1=>a nguyên dương lớn nhất có thể mà a<9/7=>a=1

Lắp vào ta có:c=2;b=3

Vậy.....

10 tháng 4 2019

công nhận khó thiệt

18 tháng 2 2019

\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)

mà a,b là số tự nhiên nên \(a,b\ge0\)

nên \(9a+4b\ge0\)

dấu bằng xảy ra khi a=b=0

18 tháng 2 2019

mk làm sai nha bạn

sr bạn

14 tháng 7 2016

bài 3 làm thế nào ạ

30 tháng 3 2017

khó thế

11 tháng 7 2020

Ta có : 

\(\frac{52}{9}=5+\frac{7}{9}\)

\(\frac{7}{9}=\frac{1}{\frac{9}{7}}=\frac{1}{1+\frac{2}{7}}\)

\(\frac{2}{7}=\frac{1}{\frac{7}{2}}=\frac{1}{1+\frac{5}{2}}\)

\(\frac{5}{2}=\frac{1}{\frac{2}{5}}\)

\(\Rightarrow\frac{52}{9}=5+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{2}{5}}}}\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=1\\c=\frac{2}{5}\end{cases}}\)