Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+B=x^3+x^2y-5^2+10xy+7y^3+8+y^3-3x^2y+6y^2+2xy^2-19xy-8x^3+2.\)
\(=x^3-8x^3+x^2y-3x^2y+10xy-19xy+7y^3+y^3+6y^2+2xy^2-25+8+2.\)
\(=-7x^3-2x^2y-9xy+8y^3+2y^2\left(3+x\right)-15.\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
Một cách khác!
Ta có: \(x^2-2y^2=1\)
\(\Rightarrow2y^2=x^2-1\)
+) Nếu x chia hết cho 3 thì x = 3 (vì x là số nguyên tố)
Thay vào, ta được: \(2y^2=8\Rightarrow y^2=4\Rightarrow y=2\)(vì y là số nguyên tố nên y > 0)
Ta thấy thỏa mãn nên tìm được cặp số (x;y) bằng (3;2)
+) Nếu x không chia hết cho 3 thì x2 chia 3 dư 1.
\(\Rightarrow x^2-1⋮3\Rightarrow2y^2⋮3\)
Vì (2;3) = 1 nên \(y^2⋮3\Rightarrow y⋮3\)(vì 3 là số nguyên tố)
\(\Rightarrow y=3\)(vì y là số nguyên tố)
Thay vào ta được: \(18=x^2-1\Rightarrow x^2=19\)(không có số nguyên tố x nào thỏa mãn)
Tóm lại, ta chỉ tìm được 1 cặp số (x;y) là (3;2)
\(8x^2y^2+x^2+y^2-10xy=0\)
\(8x^2y^2-8xy+x^2-2xy+y^2=0\)
\(8x^2y^2-8xy+2+x^2-2xy+y^2=2\)
\(2\left(2xy-1\right)^2+\left(x-y\right)^2=2\) (*)
nếu \(\left(2xy-1\right)^2=0\) thì \(\left(x-y\right)^2=2\) ( không có nghiệm thỏa mãn )
nếu \(\left(2xy-1\right)^2=1\) thì \(\left(x-y\right)^2=0\)
Suy ra x - y = 0
x = y
\(\left(2xy-1\right)^2=1\)
\(2xy-1=\pm1\)
\(\orbr{\begin{cases}2xy-1=1\\2xy-1=-1\end{cases}}\)
\(\orbr{\begin{cases}2xy=1+1\\2xy=-1+1\end{cases}}\)
\(\orbr{\begin{cases}2xy=2\\2xy=0\end{cases}}\)
\(\orbr{\begin{cases}xy=1\Rightarrow x=y=\pm1\\xy=0\Rightarrow x=0;y=0\end{cases}}\)
Vậy có 3 tậm nghiệm thỏa đề bài là ( 0 ; 0 ) ( -1 : -1 ) ( 1 ; 1 )
Đưa phương trình về dạng phương trình bậc hai ẩn x, ta có:
\(\left(8y^2+1\right)x^2-10xy+y^2=0\left(1\right)\)
Phương trình (1) có \(\Delta=96y^2-32y^4=y^2\left(96-32y^2\right)\)
Để (1) có nghiệm thì \(\Delta=y^2\left(96-32y^2\right)\ge0\)và để (1) có nghiệm nguyên thì \(\Delta\)phải là số chính phương
\(\Leftrightarrow96-32y^2=k^2\left(k\inℤ\right)\)
Tìm được \(y^2\le3\)Do y nguyên nên y={-1;0;1}
-Với y=0 tìm được x=0
-Với y=-1 tìm được x=-1
-Với y=1 tìm được x=1
Vậy (x;y)=(0;0);(-1;-1);(1;1)