\(x^2-5x+7=3^y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Nếu y=0x25x+6=0x2;3y=0⇒x2−5x+6=0⇒x∈2;3

-Nếu y=1x25x+4=0x1;4y=1⇒x2−5x+4=0⇒x∈1;4

-Nếu y>1y>1

 3y=(x2)(x3)+1x1(mod3)x=3k+1(kN)3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)

 Thay vào đầu bài ta có 9k29k+3=3y3k23k+1=3y19k2−9k+3=3y⇒3k2−3k+1=3y−1

 Nhận thấy 3y13,3k23k+11(mod3)3y−1⋮3,3k2−3k+1≡1(mod3)⇒ (loại)

Vậy pt có 4 nghiệm nguyên

28 tháng 5 2018

\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)

\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\) 

\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)

28 tháng 5 2018

Vi ét à bạn?

29 tháng 9 2016

Ta có 

PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0

Xét pt theo ẩn x ta có để pt có nghiệm thì 

\(\ge0\)

<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)

<=> - 20y4 + 165y2 - 240\(\ge0\)

<=> 1 < y2 < 7

=> y2 = 4

=> y = (2;-2)

=> x =  (2;-2)

25 tháng 5 2017

\(\left(x+y\right)\left(4x^2-4xy+y^2\right)=7\)

mik ngại vít,,,bạn tự lm nốt nha

25 tháng 5 2017

4x3 + y3 - 3xy2 - 7 = 0

4x3 - 4x2y + 4x2y + xy2 - 4xy2 + y3 = 7

(4x3 - 4x2y + xy2) + (4x2y - 4xy2 + y3) = 7

x(4x2 - 4xy + y2) + y(4x2 - 4xy + y2) = 7

(x + y)(4x2 - 4xy + y2) = 7

(x + y).(2x - y)2 = 7

=> .....

2 tháng 2 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)