Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. ĐK: \(x\ge-5\)
\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)
\(\forall x\ge-5\) ta luôn có \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) x = 4 (nhận)
\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)
đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành
\(\Leftrightarrow3x^2+mx-m=0\)
có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương
\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)
m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).
- \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
- \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
- \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
- \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)
\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)
thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành
\(3x^2=0\Leftrightarrow x=0\)
vậy cặp (x,y) nguyên là (0,-1)
\(PT\Leftrightarrow y^2\left(x^2-6\right)-2xy-x^2=0\)
Xét \(\Delta'=x^2+x^2\left(x^2-6\right)\)\(=x^4-5x^{^2}\)
Do x,y nguyên nên \(\Delta'\)là số chính phương
Đặt \(x^4-5x^2=k^2\left(k\in N\right)\)
\(\Leftrightarrow x^2\left(x^2-5\right)=k^2\)
\(\Rightarrow x^2-5\)là số chính phương
Đặt \(x^2-5=a^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=5\)
Xét TH là tìm được nghiệm nhé :P
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
+) Với m = 0 ta có nghiệm x = 2 > 0 và y = -1/2 < 0 ( thỏa mãn)
+) Với m khác 0
Ta có: \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx+m^2y=2m\\mx-2y=1\end{cases}}\)
<=> \(\hept{\begin{cases}m^2y+2y=2m-1\\x=2-my\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{2m-1}{m^2+2}\\x=2-\frac{2m^2-m}{m^2+2}=\frac{4+m}{m^2+2}\end{cases}}\)
Với đk: x > 0 ; y < 0 khi đó \(\hept{\begin{cases}\frac{2m-1}{m^2+2}< 0\\\frac{4+m}{m^2+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-4\end{cases}}\Leftrightarrow-4< m< \frac{1}{2}\)
vì m khác 0 nên ta có: \(\hept{\begin{cases}-4< m< \frac{1}{2}\\m\ne0\end{cases}}\)
Kết hợp 2 TH ta có: -4 < m <1/2
Tìm cặp số nguyên dương x,y với x nhỏ nhất có 3 chữ số thỏa mãn:
\(8x^3-y^2-2xy=0\)
Giải dùm mình nha.
9 T I C H sai buồn
\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}..\)
nhờ vào năng lực rinegan tối hậu của ta , ta có thể dễ dàng nhìn thấy mẫu chung
\(x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=\sqrt{x}\left(\sqrt{x}-2\sqrt{xy}\right)+\left(\sqrt{x}-2\sqrt{y}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+1\right)\)
\(A=\frac{\sqrt{x^3}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}-\frac{2x\left(x-1\right)}{\left(\sqrt{x}-2\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}.\)
\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
\(A=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\sqrt{x}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\left(\sqrt{x}-2\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x}{\sqrt{y}}\)
b) thay y=625 vào ta được
\(\frac{x}{\sqrt{625}}=\frac{x}{25}< 0.2\Leftrightarrow x< 5\)
vậy \(0< x< 5\)
Ta thấy \(y^2+2xy+x^2-x^2-7x+12=0\)
\(\Leftrightarrow\left(x+y\right)^2=x^2+7x+12\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)(1)
Vì\(x,y\varepsilonℤ\)nên\(\left(x+y\right)^2\)là số chính phương và \(\left(x+3\right)\left(x+4\right)\)là tích 2 số nguyên liên tiếp (2)
Từ (1) và (2) ta được
\(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+3\right)\left(x+4\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)
Giải ra tìm được x,y
\(\hept{\begin{cases}\left(x+y\right)^2=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)