K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+5y^2+2xy-4y<-3\)

=>\(x^2+2xy+y^2+4y^2-4y+1<-3+1=-2\)

=>\(\left(x+y\right)^2+\left(2y-1\right)^2<-2\)

\(\left(x+y\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)

nên (x;y)∈∅

13 tháng 1 2019

Ta có : x+2xy-4y=14

           x+2y.(x-2)=14

           (x-2)+2y.(x-2)+2=14

           (x-2).(2y+1)=14-2

           (x-2).(2y+1)=12

Do 2y+1 là số lẻ nên 2y+1 là Ước lẻ của 12

Các Ước lẻ của 12 là -3;-1;1;3

Bạn làm tiếp nhé

8 tháng 7 2019

a) 2xy - 3x + 5y = 4

=> 2(2xy - 3x + 5y) = 8

=> 4xy + 6x + 10y = 8

=> 2x(2y + 3) + 5(2y + 3) = 23

=> (2x + 5)(2y + 3) = 23

=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}

Lập bảng:

2x + 5 1 -1 23 -23
2y + 3 23 -23 1  -1
   x -2 -3 9 -14
   y 10 -13 -1 -2

Vậy ...

4 tháng 3 2018

                       XONG RỒI ĐẤY BẠN

a) \(x^2-2x+2xy=3+4y\)

\(x^2-2x+2xy-4y=3\)

\(x\left(x-2\right)+2y\left(x-2\right)=3\)

\(\left(x-2\right)\left(x+2y\right)=3\)

\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)Ta có bảng giá trị:

\(x-2\)\(1\)\(-1\)\(3\)\(-3\)
\(x+2y\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(3\)\(1\)\(5\)\(-1\)
\(y\)\(0\)\(-2\)\(-2\)\(0\)

               Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)

b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

             Ta có: \(\left|2x-3y\right|\ge0\)

                        \(\left|5y-7z\right|\ge0\)

                        \(\left|x^2-y^2-2z^2-45\right|\ge0\)

                  \(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

            Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

               \(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)

               \(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)

               \(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)

                             Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

                           \(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)

                                                                                        \(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))

                 \(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)

                           Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)

                                   

4 tháng 3 2018

cảm ơn bạn nha Huỳnh Phước Mạnh

14 tháng 11 2017

y^2 luôn luôn lớn hơn hoặc bằng 0 => 5y^2 cũng luôn luôn lớn hơn hoặc = 0

=> 6x^2 nhỏ hơn hoặc bằng 74 => x^2 \(\le\)74/6 \(\le\)12

vì x nguyên nên x^2 có thể nhận các giá trị 0; 1;4;9

x^2 = 0 => 5y^2=74=>y^2=74/5 loại ( vì y không nguyên )

x^2 = 1 => 5y^2=68=> y^2= 68/5 loại ( vì y không nguyên)

x^2 = 4 => 5y^2= 50 => y^2 = 10 loại ( vì y không nguyên )

x^2 = 9 => 5y^2= 20 => y^2=4 => y = 2 hoặc y = -2, khi đó x = 3 hoặc x = -3

vậy : (x,y)=(3;2),(-3;-2),(-3;2),(3;-2)

tk mik na, thanks nhìu !

1 tháng 3 2018

Ta có : 

x + 2xy - 4y = 14

=> x + 2xy - 4y - 2 = 12

=> ( x - 2 ) + ( 2xy - 4y ) = 12

=>  (  x - 2 )  + 2y . ( x - 2 ) = 12

=>      ( x - 2 ) . ( 2y + 1 )    = 12

Do x , y thuộc z => x - 2 thuộc z , 2y + 1 thuộc z 

=> x - 2 , 2y + 1 thuộc Ư ( 12 ) 

=> x - 2 , 2y + 1 thuộc { 1 ,   -1 , -12 , 3 , 4 , -4 , -3 , -6 , -2 , 6 , 2 } 

 

MH
15 tháng 8

Ta cần tìm các cặp số nguyên \(\left(\right. x , y \left.\right) \in \mathbb{Z}\) sao cho:

\(x^{2} + y^{2} - 2 x - 4 y < - 3\)


Bước 1: Quy về dạng bình phương hoàn chỉnh

Ta nhóm các hạng tử theo biến:

\(x^{2} - 2 x + y^{2} - 4 y < - 3\)

Bây giờ, hoàn thành bình phương:

  • \(x^{2} - 2 x = \left(\right. x - 1 \left.\right)^{2} - 1\)
  • \(y^{2} - 4 y = \left(\right. y - 2 \left.\right)^{2} - 4\)

Thay vào:

\(\left(\right. x - 1 \left.\right)^{2} - 1 + \left(\right. y - 2 \left.\right)^{2} - 4 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} - 5 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)


Bước 2: Giải bất phương trình

Ta cần tìm các số nguyên \(\left(\right. x , y \left.\right)\) sao cho:

\(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)

Vì đây là tổng bình phương nên:

  • \(\left(\right. x - 1 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)
  • \(\left(\right. y - 2 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)

Và tổng < 2.

Xét từng khả năng:

  1. \(\left(\right. x - 1 \left.\right)^{2} = 0 \Rightarrow x = 1\)
    • \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 0 → TM
    • \(\left(\right. y - 2 \left.\right)^{2} = 1 \Rightarrow y = 1 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 3\) → Tổng = 1 → TM
  2. \(\left(\right. x - 1 \left.\right)^{2} = 1 \Rightarrow x = 0 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 2\)
    • \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 1 → TM

Không có trường hợp nào với \(\left(\right. x - 1 \left.\right)^{2} = 1\)\(\left(\right. y - 2 \left.\right)^{2} = 1\) vì tổng = 2 → không thỏa.


Kết luận:

Tập nghiệm nguyên là các cặp:

\(\left(\right. x , y \left.\right) \in \left{\right. \left(\right. 1 , 2 \left.\right) , \left(\right. 1 , 1 \left.\right) , \left(\right. 1 , 3 \left.\right) , \left(\right. 0 , 2 \left.\right) , \left(\right. 2 , 2 \left.\right) \left.\right}\) tham khảo

\(x^2+y^2-2x-4y<-3\)

=>\(x^2-2x+1+y^2-4y+4<-3+1+4\)

=>\(\left(x-1\right)^2+\left(y-2\right)^2<2\)

mà x,y nguyên

nên \(\left\lbrack\left(x-1\right)^2;\left(y-2\right)^2\right\rbrack\in\left\lbrace\left(1;0\right);\left(0;1\right);\left(0;0\right)\right\rbrace\)

=>(x-1;y-2)∈{(1;0);(-1;0);(0;1);(0;-1);(0;0)}

=>(x;y)∈{(2;2);(0;2);(1;3);(1;1);(1;2)}

1 tháng 4 2016

fgdfgd

16 tháng 8

ta có x+4y=3(1)

lại có −xcăn3​=(y−2) căn3​⇒−x=y−2⇒x=2−y(2)

thế 2 vào 1

(2−y)+4y=3⇒2+3y=3⇒3y=1⇒y=1/3

x=2−1/3​=5/3

Cặp số hữu tỷ \(\left(\right. x , y \left.\right)\) duy nhất thỏa mãn là:̣̣(5/3;1/3)