K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

\(4x^2+9y^2-8x-6y-20=0\)

\(\Leftrightarrow4\left(x^2-2x+1\right)+9y^2-6y+1=25\)

\(\Leftrightarrow4\left(x-1\right)^2+\left(3y-1\right)^2=25\)

25 là tổng các số chính phương (4,3),(5,1)z

\(4\left(x-1\right)^2⋮4\Rightarrow4\left(x-1\right)^2=16\Rightarrow x-1=+-4\)

\(\Rightarrow x=5,-3\)

\(\left(3y-1\right)^2=9\Rightarrow3y-1=+-3\Rightarrow3y=4,-2\).Vậy y không nguyên

Suy ra x=5,-3 và y vô nghiệm

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

5 tháng 7 2019

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)

\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)

\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

Vay.....

\(4x^2+4x+y^2-6y=24\)

\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)

Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)

Vì là nghiệm nguyên dương nên:

\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc     \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\)         hoặc     \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)           hoặc      \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)

Vậy các cặp số (x;y) là: (1;8);(2;6)

3 tháng 6 2017

a) \(x^2-8x+y^2+6y+25=0\)

\(\left(x-8\right)x+y\left(y+6\right)+25=0\)

\(x^2+y^2+6y+25=8x\)

\(\Rightarrow x=4,y=-3\)

3 tháng 6 2017

b )​4x2-4x+9y2 -12y +5

<=> [( 2x )2​ - 4x + 1 ] [ (3y) 2 ​- 12y + 4 )] = 0

<=> ( 2x - 1 )2 ​ + ( 3y - 2 )2​ =0   ( Vì (2x -1)2 ​>=0 , ( 3y - 2 )2 >= 0 )

<=> 2x - 1 = 0 và 3y -2 = 0

<=> x = 1/2     và y = 2/3

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

20 tháng 4 2021

Ta co : \(x^2+y^2-4x+3=0\)

\(=>\left(x-2\right)^2+y^2=1\)

\(=>\left(x-2\right)^2\le1=>x\le3\)

Lai co : \(x^2+y^2=4x-3\le4.3-3=9\)

Dau = xay ra \(< =>\hept{\begin{cases}x=4\\y=0\end{cases}}\)

Vay gtln cua P = 9 khi x = 4 ; y = 0

(sai thi bo qua cho minh vi lan dau lam dang nay)

12 tháng 6 2018

\(4x^2-9xy-9y^2=0\)

\(\Leftrightarrow\left(x-3y\right)\left(4x+3y\right)=0\)

làm nốt