Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\frac{y}{5}+\frac{1}{10}=\frac{1}{x}\)
\(\frac{y.2}{10}+\frac{1}{10}=\frac{1}{x}\)
\(\frac{y.2+1}{10}=\frac{1}{x}\Leftrightarrow\left(y.2+1\right)x=10\)
Ta có Ư(10)={-1;1;-2;2-5;5-10;10}
Mà y.2+1 là số lẻ nên có bảng sau:
\(y.2+1\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y.2\) | \(-2\) | \(0\) | \(-6\) | \(4\) |
\(y\) | \(-1\) | \(0\) | \(-3\) | \(2\) |
\(x\) | \(-10\) | \(10\) | \(-2\) | \(2\) |
b/\(\frac{x}{4}-\frac{1}{2}=\frac{3}{y}\)
\(\frac{x}{4}-\frac{2}{4}=\frac{3}{y}\)
\(\frac{x-2}{4}=\frac{3}{y}\Leftrightarrow\left(x-2\right)y=12\)
Ta có Ư(12)={-1;1;-2;2-3;3;-4;4;-6;6;-12;12}
Ta có bảng sau:
x-2 | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
x | 1 | 3 | 0 | 4 | -1 | 5 | -2 | 6 | -4 | 8 | -10 | 14 |
y | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
CHÚC BẠN HỌC TỐT!!!
\(P=\frac{x-2}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)
P nguyên <=>3 chia hết cho x+1 <=>x+1 là Ư(3)
Mà Ư(3)={+-1;+-3}
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
Vậy x={-4;-2;0;2} thì P nguyên
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
a)\(\frac{x-1}{5}=\frac{3}{y+4}\Rightarrow\left(x-1\right)\left(y+4\right)=15\)
=>x-1 và y+4 thuộc Ư(15)={±1;±3;±5;±15}
Tới đây bn tự xét nhé nó hơi dài nên mk ngại làm
b)Để P thuộc Z
=>x-2 chia hết x+1
=>x+1-3 chia hết x+1
=>3 chia hết x+1
=>x+1 thuộc Ư(3)={1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
\(Ta \) \(có : 1 / x - 10x / y = \)\(2\)
\(\Rightarrow\)\(( y - 10x ) / xy = 2 ( Quy đồng )\)
\(\Rightarrow\)\(y - 10x = 2xy\)
\(\Rightarrow\)\(y - 10x - 2xy = 0\)
\(\Rightarrow\)\(( y - 2xy ) - 10x = 5- 5\)
\(\Rightarrow\)\(y. ( 1 - 2x ) - 10x + 5 = 5\)
\(\Rightarrow\)\(y. ( 1 - 2x ) + ( 5 - 10x )= 5\)
\(\Rightarrow\)\(y. ( 1 - 2x ) + 5. ( 1 - 2x ) = 5\)
\(\Rightarrow\)\(( 1 - 2x )( y + 5 )=5\)
\(Vậy : ...............\)