Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(|x^2+2x|\ge0\forall x\) ; \(|y^2-9|\ge0\forall y\)
\(\Rightarrow|x^2+2x|+|y^2-9|\ge0\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}|x^2+2x|=0\\|y^2-9|=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2+2x=0\\y^2-9=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x.\left(x+2\right)=0\\y^2=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=0\\x=-2\end{cases}}\\y=3\end{cases}}\)
=>3x-5=0 và y2-1=0 và x-z=0
=>x=5/3 và y=-1 hoặc y=1 và z=5/3
Coi phương trình trên là pt bậc 2 ẩn x tham số y
Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)
\(=y^2-2y+1-4y-12\)
\(=y^2-6y-11\)
Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)
Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương
Đặt \(\Delta=k^2\left(k\inℕ\right)\)
\(\Leftrightarrow y^2-6y-11=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)
\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)
Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên
Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\)
=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left|y+2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy GTNN là 0 khi x = 1,y = -2
<=> x = 1,y = -2
Bài giải
\(\left(x-1\right)^2+\left|y+2\right|=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|y+2\right|\ge\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|y+2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(1\text{ ; }-2\right)\)