K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:
a)

Ta có: \(2^x-2^y=256=2^8\) (\(\Rightarrow x>y\) )

\(\Leftrightarrow 2^y(2^{x-y}-1)=2^8(*)\)

\(x>y\Rightarrow x-y>0\Rightarrow 2^{x-y}\) chẵn. Do đó \(2^{x-y}-1\) lẻ. Kết hợp với

\((*)\Rightarrow 2^{x-y}-1=1\Leftrightarrow x-y=1\)

Khi đó: \(2^8=2^y(2^{x-y}-1)=2^y(2-1)=2^y\Rightarrow y=8\)

\(\Rightarrow x=y+1=9\)

PT có nghiệm \((x,y)=(9,8)\)

b) Giả sử \(x=y\Rightarrow 3^x+3^y= 2.3^x=3\vdots 2\) (vô lý). Do đó \(x\neq y\)

Không mất tính tổng quát giả sử \(x> y\).

PT tương đương: \(3^y(3^{x-y}+1)=3\) \((**)\)

\(x>y\Rightarrow x-y\geq 1\Rightarrow 3^{x-y}\vdots 3\)

\(\Rightarrow 3^{x-y}+1\not\vdots 3\). Kết hợp với \((**)\Rightarrow 3^{x-y}+1=1\Leftrightarrow 3^{x-y}=0\) (vl)

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Câu c)

\((x-2)^2=3\Leftrightarrow \) \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow \)\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

Câu d)

Nếu \(y=0\Rightarrow 2007^x=2000-2008^0=1999\Rightarrow x\not\in\mathbb{N}\)

Nếu \(y\geq 1.\)Ta thấy với mọi số tự nhiên \(x\in\mathbb{N}\Rightarrow 2007^x\) lẻ và \(2008^y\) chẵn

\(\Rightarrow 2007^x+2008^y\) lẻ. Mà 2000 là số chẵn, do đó pt vô nghiệm.

26 tháng 12 2018

???

26 tháng 12 2018

có t trl nè :vvv

AH
Akai Haruma
Giáo viên
29 tháng 1 2018

Lời giải:

Ta có: \(x^3+y^3=9xy\)

\(\Leftrightarrow (x+y)^3-3xy(x+y)=9xy\)

\(\Leftrightarrow (x+y)^3-3xy(x+y+3)=0\)

\(\Leftrightarrow (x+y)^3+3^3-3xy(x+y+3)=27\)

\(\Leftrightarrow (x+y+3)[(x+y)^2-3(x+y)+9]-3xy(x+y+3)=27\)

\(\Leftrightarrow (x+y+3)[(x+y)^2-3(x+y)+9-3xy]=27\)

\(\Leftrightarrow (x+y+3)(x^2+y^2+9-xy-3x-3y)=27\)

Vì \(x,y\in\mathbb{N}^*\Rightarrow x+y+3\geq 5\)

Đến đây ta xét các TH:
TH1: \(\left\{\begin{matrix} x+y+3=9(1)\\ x^2+y^2+9-xy-3x-3y=3(2)\end{matrix}\right.\)

\((1)\rightarrow x+y=6\)

Thay vào PT thứ 2:

\((x+y)^2-2xy+9-xy-3(x+y)=3\)

\(\Leftrightarrow 27-3xy=3\Leftrightarrow xy=8\)

Thay \(y=6-x\Rightarrow x(6-x)=8\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow (x-2)(x-4)=0\Leftrightarrow x=2, x=4\)

\(\Rightarrow y=4, y=2\)

TH2: \(\left\{\begin{matrix} x+y+3=27(1)\\ x^2+y^2+9-xy-3x-3y=1(2)\end{matrix}\right.\)

\((1)\rightarrow x+y=24\)

Thay vào (2):

\((x+y)^2-2xy+9-xy-3(x+y)=1\)

\(\Leftrightarrow 513-3xy=1\Leftrightarrow xy=\frac{512}{3}\not\in\mathbb{N}^*\) (loại)

Vậy \((x,y)=(2,4); (4,2)\)

a) GTLN là 2

21 tháng 1 2017

a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)

Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{matrix}\right.\)

\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

\(x^2+\left(y-\frac{1}{10}\right)^4=0\)

Xảy ra khi \(\left\{\begin{matrix}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\y=\frac{1}{10}\end{matrix}\right.\)

21 tháng 1 2017

b)\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

Ta thấy: \(\left\{\begin{matrix}\left(x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

Suy ra \(\left\{\begin{matrix}\left(x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-5=0\\y^2-\frac{1}{4}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=5\\y=\pm\frac{1}{2}\end{matrix}\right.\)

23 tháng 7 2015

Nếu x = y thì 2x-y = 1 => 2x-y - 1 = 0 => 2y.(2x-y - 1) = 0 < 256 

=> x khác y => 2x-y - 1 là số lẻ

ta có: 2y.(2x-y - 1) = 256 = 28 = 28.1 => 2y = 28 và 2x-y - 1 = 1

=> y = 8 và 2x-y = 2 = 21 => x - y = 1 => x = y + 1 = 8 + 1 = 9

Vậy x = 9 ; y = 8

23 tháng 7 2015

Nếu x = y thì 2x-y = 1 => 2x-y - 1 = 0 => 2y.(2x-y - 1) = 0 < 256 

=> x \(\ne\) y => 2x-y - 1 là số lẻ

ta có: 2y.(2x-y - 1) = 256 = 28 = 28.1 => 2y = 28 và 2x-y - 1 = 1

=> y = 8 và 2x-y = 2 = 21 => x - y = 1 => x = y + 1 = 8 + 1 = 9

Vậy x = 9        ;        y = 8