Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có: \(\frac{x}{3}=-\frac{12}{9}\)
=> \(\frac{3x}{9}=-\frac{12}{9}\)
=> 3x = -12
=> x = -12 : 3
=> x = -4
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
=> \(\frac{4}{5}x=-\frac{1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{11}{10}\)
=> \(x=\frac{11}{10}:\frac{4}{5}\)
=> \(x=\frac{11}{8}\)
2
\(\text{a) }\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)x=-3\)
\(\Rightarrow\frac{1}{2}.\left(\frac{4950}{9900}-\frac{1}{9900}\right)x=-3\)
\(\Rightarrow\left(\frac{1}{2}.\frac{4949}{9900}\right).x=-3\)
\(\Rightarrow\frac{4949}{19800}x=-3\)
\(\Rightarrow x=\left(-3\right).\frac{19800}{4949}\)
\(\Rightarrow x=\frac{-59400}{4949}\)
P/s : ko chắc nha
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
để các phân số sao là số nguyên thì mẫu phải là ước của tử
dựa vào đây rồi em tự làm nhé , chị ngại làm lắm
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
\(\Rightarrow1+\frac{1}{2.3}.2+\frac{1}{3.4}.2+...+\frac{1}{x\left(x+1\right)}.2=2\)
=> \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=2\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x\left(x+1\right)}=1\)
=> \(1-\frac{1}{x+1}=1\)
=> \(\frac{1}{x+1}=0\Rightarrow0\left(x+1\right)=1\Rightarrow x\in\varnothing\)
\(\frac{1}{1.2:2}+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{x.\left(x+1\right):2}=2\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=2\)
\(2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\)
\(1-\frac{1}{x+1}=1\)
\(\frac{1}{x+1}=0\)
Vậy x vô nghiệm.