K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 5 2021

Với \(x\le0\)không thỏa mãn. 

Với \(x\ge1\)thì dễ thấy ta sẽ có \(z>y\).

\(\hept{\begin{cases}x+6=3^y\\8x+3=3^z\end{cases}}\Rightarrow8\left(x+6\right)-\left(8x+3\right)=45=8.3^y-3^z\)

\(\Leftrightarrow5.3^2=3^y\left(8-3^{z-y}\right)\)

\(\Rightarrow\hept{\begin{cases}y=2\\z-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\z=3\end{cases}}\)

Suy ra \(x=3\).

Vậy ta có nghiệm \(\left(3,2,3\right)\).

13 tháng 5 2021

Thk you

3 tháng 3 2020

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

1 tháng 7 2016

Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này

5 tháng 8 2018

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1)(2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x-y+z}{16-12+15}=\frac{33}{19}\)

Sau đó bạn tự tìm x, y, z là đc

Học tốt nhé :)

4 tháng 3 2020

1.

vì \(x-y=2\)

\(\Rightarrow y=x-2\)

\(\Rightarrow x>y\)

vì \(\left|y\right|\le5\)

\(\Rightarrow-5\le y\le5\)

Ta có: \(\left|x\right|\le3\)

⇒ xmin=−3 và xmax=3

⇒ ymin=−5 và ymax=1

\(\Rightarrow-5\le y\le1\text{( đúng)}\)

\(\Rightarrow\text{Với }-3\le x\le3\)thì  \(y=x-2\)

16 tháng 12 2016

Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)

Ta có

\(x^2+y^3+z^4=90\)

\(\Rightarrow z^4< 90\)

Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được

Hay z nhận các giá trị là 1, 2, 3

Với z = 3 thì

\(x^2+y^3=90-3^4=9\)

Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2

Thế vô lần lược tìm được: y = 2, x = 1

Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại

Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)

Mình chỉ hướng dẫn bạn cách làm thôi nhé.

17 tháng 2 2020

Vì x,y,z là các số nguyên dg nên x,y,z >/1 

Ta có : x+y+z= 90

Suy ra z4 < 90

Ta thấy rằng {4= 256 > 90 , 3= 81 < 90 nên z ko thể >4

Hay z nhận các gt là 1,2,3

Với z=3 thì :

x2