Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- khang7a
- 19/02/2020
Đáp án:
Giải thích các bước giải:
PT tương đương với: x(y-2)-(y-2)=-4
⇔ (x-1)(y-2)=-4
Vì x,y nguyên nên x-1 ; y-2 là các ước của -4
TH1: x-1=1; y-2=-4 ⇒ x=2; y=-2
TH2: x-1=-1; y-2=4 ⇒ x=0; y=6
TH3: x-1=2; y-2=-2 ⇒ x=3; y=0
TH4: x-1=-2; y-2=2 ⇒ x=-1; y=4
TH5: x-1=4; y-2=-1 ⇒ x=5; y=1
TH6: x-1=-4; y-2=1 ⇒ x=-3; y=3
a) \(y=\frac{2x+7}{x-4}=\frac{2x-8+15}{x-4}=2+\frac{15}{x-4}\inℤ\Leftrightarrow\frac{15}{x-4}\inℤ\)mà \(x\inℤ\)nên \(x-4\)là ước của \(15\).
Suy ra \(x-4\in\left\{-15,-5,-3,-1,1,3,5,15\right\}\Leftrightarrow x\in\left\{-11,-1,1,3,5,7,9,19\right\}\).
b) \(y=\frac{4x+11}{2x-3}=\frac{4x-6+17}{2x-3}=2+\frac{17}{2x-3}\inℤ\Leftrightarrow\frac{17}{2x-3}\inℤ\)mà \(x\inℤ\)nên \(2x-3\)là ước của \(17\).
Suy ra \(2x-3\in\left\{-17,-1,1,17\right\}\Leftrightarrow x\in\left\{-7,1,2,10\right\}\).
Dễ thấy \(VT\ge0\)
Mà đề lại cho \(VT\le0\)
Nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy=10\\yz=-15\\xz=-6\end{cases}}\)
Nhân từng vế của 3 đẳng thức trên lại được \(x^2y^2z^2=900\)
\(\Leftrightarrow xyz=\pm30\)
*Với \(xyz=30\Rightarrow\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{30}{-15}=-2\\y=\frac{xyz}{xz}=\frac{30}{-6}=-5\\z=\frac{xyz}{xy}=\frac{30}{10}=3\end{cases}}\)
*Với \(xyz=-30\Rightarrow\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{-30}{-15}=2\\y=\frac{xyz}{xz}=\frac{-30}{-6}=5\\z=\frac{xyz}{xz}=\frac{-30}{10}=-3\end{cases}}\)
Vậy ,,,,,,,,,,,
Ta có \(\hept{\begin{cases}\left|xy-10\right|\ge0\forall x,y\\\left|yz+15\right|\ge0\forall y,z\\\left|zx+6\right|\ge0\forall z,x\end{cases}}\)=>|xy-10|+|yz+15|+|zx+6|\(\ge0\forall x,y,z\)
mà |xy-10|+|yz+15|+|zx+6|\(\le0\)
=>|xy-10|+|yz+15|+|zx+6| =0
<=>\(\hept{\begin{cases}\left|xy-10\right|=0\\\left|yz+15\right|=0\\\left|zx+6\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}xy-10=0\\yz+15=0\\zx+6=0\end{cases}}\)<=>\(\hept{\begin{cases}xy=10\\yz=-15\\zx=-6\end{cases}}\)
Ta có:\(\frac{xy}{yz}\)=\(\frac{10}{-15}\)
=>\(\frac{x}{z}\)=\(\frac{-2}{3}\)
=>x=\(\frac{-2}{3}z\)
Thay x vào biểu thức zx=-6 ta được :
\(\frac{-2}{3}.z^2\)=-6
z2 = 9 => z= \(\orbr{\begin{cases}3\\-3\end{cases}}\)
Với z = 3 \(\Rightarrow\)\(\hept{\begin{cases}x=-6:3=-2\\y=-15:3=-5\end{cases}}\)
Với z= -3 \(\Rightarrow\)\(\hept{\begin{cases}x=-6:\left(-3\right)=2\\y=-15:\left(-3\right)=5\end{cases}}\)
Vậy (x,y,z)={ (-2,-5,3);(2,5,3) }
a/ \(\frac{x}{3}-\frac{5}{y}=\frac{5}{6}\Leftrightarrow\frac{xy-15}{3y}=\frac{5}{6}\Leftrightarrow2xy-30=5y\)\(\Leftrightarrow y\left(2x-5\right)=30\)
Ta phải phân tích số 30 thành tích hai số y là số chẵn vì 2x - 5 là số lẻ. Có ba trường hợp
- trường hợp 1 : \(\hept{\begin{cases}y=30\\2x-5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=30\end{cases}}}\)
-Trường hợp 2 : \(\hept{\begin{cases}y=10\\2x-5=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}}\)
- Trường hợp 3 : \(\hept{\begin{cases}y=6\\2x-5=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=6\end{cases}}}\)
b/ \(xy-2x+y=9\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=7\) \(\Leftrightarrow\left(y-2\right)\left(x+1\right)=7\)
- T/hợp 1 \(\hept{\begin{cases}x+1=1\\y-2=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=9\end{cases}}}\) - T/hợp 2 :\(\hept{\begin{cases}x+1=7\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}}\)
- T/hợp 3 : \(\hept{\begin{cases}x+1=-1\\y-2=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}}\) - T/hợp 4: \(\hept{\begin{cases}x+1=-7\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
c/ \(xy=x+y\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
- T/hợp 1: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\) - T/hợp 2 : \(\hept{\begin{cases}x-1=-1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
xy-2x-y=-6
=> x(y-2)-y+2=-6+2
=> x(y-2)-(y-2)=-4
=> (x-1)(y-2)=-4
Ta có bảng
x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-2 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 2 | 0 | 3 | -1 | 5 | -3 |
y | -2 | 6 | 0 | 4 | 1 | 3 |
Vậy...
Ta có \(xy-2x-y=-6\)
\(\Rightarrow x.\left(y-2\right)-y=-6\)
\(\Rightarrow x.\left(y-2\right)-\left(y-2\right)-2=-6\)
\(\Rightarrow x.\left(y-2\right)-\left(y-2\right)=-4\)
\(\Rightarrow\left(y-2\right).\left(x-1\right)=-4\)
Giải tiếp bằng ước phương trình
Ta có : xy - 2x - y = -6
( xy - 2x ) - y = -6
x(y-2) - y = -6
x(y-2) - y + 2 = -6 + 2
x(y-2) - ( y-2 ) = -4
(y-2) . (x-1) = -4
Mà -4 có thể phân tích thành tích của 2 số nguyên là :
-4 = (-1) . 4 = 1 . (-4) = 2 . (-2) = (-2) . 2
Do đó ta có bảng sau:
y-2 x-1 y x
-1 4 1 5
1 -4 3 -3
2 -2 4 -1
-2 2 0 0
Vậy ...
_HT_