Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a) Từ \(\frac{x}{y}=\frac{2}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\left(k\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
Vậy \(\hept{\begin{cases}x=2k\\y=5k\end{cases}\left(k\inℤ\right)}\)
b) và c) tương tự em nhé.
Giải :
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\) nên 2(x-3) = 3(y-2)
Do đó : 2x - 6 = 3y - 6 nên 2x = 3y
\(\Rightarrow\) 2x - 2y = y hay 2(x-y) = y
Nên 2.4 = y
Vậy : \(y=8;x=\dfrac{3y}{2}=\dfrac{3.8}{2}=12\)
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\)
\(\Rightarrow\left(x-3\right)\cdot2=3\cdot\left(y-2\right)\)
\(\Rightarrow2x-6=3y-6\)
\(\Rightarrow2x=3y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{3}{2}\)
mà x - y = 4
\(\Rightarrow\left\{{}\begin{matrix}x=4:\left(3-2\right)\cdot3=12\\y=4:\left(3-2\right)\cdot2=8\end{matrix}\right.\)
a) \(x\)=1 \(y\)= 12
b)\(x\)=4 \(y\)= 14
hoặc \(x\)= 6 \(y \)=21
...