Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x.21=6.7
x.21=42
x=42:21
x = 2
b) y . 20 = -5.28
y.20 = -140
y = (-140) : 20
y = -7
a)=>x*21=7*6
=>x*21=42
=>x=42/21
x=2
b)=>y*20=(-5)*28
=>y*20=-140
=>y=-140/20
y=-7
a) \(x\)=1 \(y\)= 12
b)\(x\)=4 \(y\)= 14
hoặc \(x\)= 6 \(y \)=21
...
\(\dfrac{-2}{x}=\dfrac{y}{3}\)\(\Rightarrow\left(-2\right).3=x.y\:\Leftrightarrow\:x.y=-6\)
Ta có các cặp số (x;y): \(\left(x=-1;\:y=6\right);\:\left(x=1;\:y=-6\right);\:\left(x=-3;\:y=2\right);\:\left(x=3;\:y=-2\right)\)
Vì \(x< 0< y\) nên có các cặp số thoả mãn: \(\left(x=-1;\: y=6\right);\:\left(x=-3;\: y=2\right)\)
Vậy: \(x=-1;\: y=6\) và \(x=-3\: ;\: y=2\: \)
a. \(\Rightarrow\left\{\begin{matrix}\dfrac{-10}{15}=\dfrac{x}{-9}\\\dfrac{-10}{15}=\dfrac{-8}{y}\\\dfrac{-10}{15}=\dfrac{z}{-21}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b. \(\Rightarrow\left\{\begin{matrix}\dfrac{-7}{6}=\dfrac{x}{18}\\\dfrac{-7}{6}=\dfrac{-98}{y}\\\dfrac{-7}{6}=\dfrac{-14}{z}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-21\\y=84\\z=-12\end{matrix}\right.\)
a) Ta có: \(\dfrac{-10}{15}=\dfrac{x}{-9}\)
\(\Rightarrow15x=-10.\left(-9\right)\)
\(\Rightarrow15x=90\)
\(\Rightarrow x=6\)
Khi đó: \(\dfrac{6}{-9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
\(\Rightarrow y=\dfrac{-8\left(-9\right)}{6}=12\)
và \(z=\dfrac{-8\left(-21\right)}{12}\) \(=14\)
Vậy \(\left[{}\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b) Lại có: \(\dfrac{-7}{6}=\dfrac{x}{18}\)
\(\Rightarrow6x=-7.18\)
\(\Rightarrow6x=-126\)
\(\Rightarrow x=-21\)
Khi đó \(\dfrac{-21}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}\)
\(\Rightarrow y=\dfrac{-98.18}{-21}=84\)
và \(z=\dfrac{-14.84}{-98}=12\)
Vậy \(\left[{}\begin{matrix}x=-21\\y=84\\z=12\end{matrix}\right.\)
x=\(\dfrac{-4.\left(-10\right)}{8}=5\).
y=\(\dfrac{-10.\left(-7\right)}{5}=14.\)
z=\(\dfrac{-7.\left(-24\right)}{14}=12.\)
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Giải :
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\) nên 2(x-3) = 3(y-2)
Do đó : 2x - 6 = 3y - 6 nên 2x = 3y
\(\Rightarrow\) 2x - 2y = y hay 2(x-y) = y
Nên 2.4 = y
Vậy : \(y=8;x=\dfrac{3y}{2}=\dfrac{3.8}{2}=12\)
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\)
\(\Rightarrow\left(x-3\right)\cdot2=3\cdot\left(y-2\right)\)
\(\Rightarrow2x-6=3y-6\)
\(\Rightarrow2x=3y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{3}{2}\)
mà x - y = 4
\(\Rightarrow\left\{{}\begin{matrix}x=4:\left(3-2\right)\cdot3=12\\y=4:\left(3-2\right)\cdot2=8\end{matrix}\right.\)
a) x=\(\dfrac{5.6}{-10}=-3.\)
b) y=\(\dfrac{3.77}{-33}=-7.\)
a) \(\dfrac{-5}{6}.\dfrac{120}{25}< x< \dfrac{-7}{15}.\dfrac{9}{14}\)
\(\Rightarrow-4< x< \dfrac{-3}{10}\)
\(\Rightarrow\dfrac{-40}{10}< x< \dfrac{-3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{-39}{10};\dfrac{-38}{10};\dfrac{-37}{10};...;\dfrac{-5}{10};\dfrac{-4}{10}\right\}\)
b) \(\left(\dfrac{-5}{3}\right)^2< x< \dfrac{-24}{35}.\dfrac{-5}{6}\)
\(\Rightarrow\dfrac{25}{9}< x< \dfrac{4}{7}\)
\(\Rightarrow\dfrac{175}{63}< x< \dfrac{36}{63}\)
\(\Rightarrow x=\varnothing\)
c) \(\dfrac{1}{18}< \dfrac{x}{12}< \dfrac{y}{9}< \dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{36}< \dfrac{3x}{36}< \dfrac{4y}{36}< \dfrac{9}{36}\)
\(\Rightarrow x\in\left\{1;2\right\}\)
+) Với \(x=1\)
\(\Rightarrow y\in\left\{1;2\right\}\)
+) Với \(x=2\)
\(\Rightarrow y=2\)
Vậy \(x=1\) thì \(y\in\left\{1;2\right\}\); \(x=2\) thì \(y=8\).
\(\dfrac{x}{7}+\dfrac{1}{y}=\dfrac{-1}{14}\)
=>\(\dfrac{xy+7}{7y}=\dfrac{-1}{14}\)
=>\(14\left(xy+7\right)=-7y\)
=>2(xy+7)=-y
=>2xy+y=-14
=>y(2x+1)=-14
mà 2x+1 lẻ(do x nguyên)
nên \(\left(2x+1\right)\cdot y=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)
=>\(\left(2x+1;y\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-14\right);\left(-1;14\right);\left(3;-2\right);\left(-4;2\right)\right\}\)