Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2-4\left(m-1\right)x+5=0\) \(\left(a=1;b=-4\left(m-1\right);c=5\right)\)
a) Vì pt có nghiệm x=1\(\Rightarrow a+b+c=0\)
\(\Leftrightarrow1-4\left(m-1\right)+5=0\)
\(\Leftrightarrow1-4m+4+5=0\)
\(\Leftrightarrow4m=10\)
\(\Leftrightarrow m=\frac{5}{2}\)
b) Vì pt có nghiệm x1=1\(\Rightarrow x2=\frac{c}{a}=5\)
a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy Min P =-1/4
c, Chắc bằng nhau vì cùng dương mà
Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0
b) Đkxd X >=0
Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)
Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0
Hay min p =0
Dấu = xảy ra <=> x=0
Vậy để minP=0<=>x=0
C)Dkxd x>1
CóP>=0(chứng minh trên )
=>|P|=P
\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4}{x-1}\)
b) \(\frac{4}{x-1}=7\)
\(\Leftrightarrow4=7.\left(x-1\right)\)
\(\Leftrightarrow\frac{4}{7}=x-1\)
\(\Leftrightarrow\frac{4}{7}+1=x\)
\(\Leftrightarrow\frac{11}{7}=x\)
\(\Rightarrow x=\frac{11}{7}\)
ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)
Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3
\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
Đặt \(x^2+x+1=a\)
\(pt\Leftrightarrow a\left(a+1\right)=12\)
\(\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\\a=3\end{cases}}\)
Thay a rồi tìm nghiệm là xong
\(A=x\left(x+1\right)\left(x+7\right)\left(x+8\right).\)
\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
giả sử tồn tại x∊Z để x.(x+1).(x+7).(x+8) là số chính phương
đặt x.(x+1).(x+7).(x+8) = n² (n∊N)
<=> (x²+8x).(x²+8x+7) = n²
<=> (2x²+16x).(2x²+16x+14) = 4n²
<=> (2x²+16x).(2x²+16x+7)+7.(2x²+16x) = 4n²
<=> (2x²+16x).(2x²+16x+7)+7.(2x²+16x+7) = 4n²+49
<=> (2x²+16x+7)² = 4n²+49
<=> (2x²+16x+7-2n).(2x²+16x+7+2n) = 49
x∊Z,n∊N=>2x²+16x+7-2n∊Z ; 2x²+16x+7+2n∊Z
n∊N=>2x²+16x+7-2n≤2x²+16x+7+2n
Phân tích 49 thành tích 2 số nguyên chỉ có
49 = 1.49 = 7.7 = (-1).(-49) = (-7).(-7)
-nếu 2x²+16x+7-2n = 2x²+16x+7+2n
<=> n=0
<=> x.(x+1).(x+7).(x+8)
<=> x = 0 hoặc x = -1 hoặc x = -7 hoặc x = -8
thử lại thấy thỏa mãn
-nếu 2x²+16x+7-2n ≠ 2x²+16x+7+2n
+2x²+16x+7-2n = 1 và 2x²+16x+7+2n = 49
<=> x²+8x-n = -3 và x²+8x+n = 21
<=> n = 12 và x = 1 hoặc x = -9
+2x²+16x+7-2n = -49 và 2x²+16x+7+2n = -1
<=> x²+8x-n = -28 và x²+8x+n = -4
<=> n = 12 và x = -8
thử lại thấy thỏa mãn
vậy...
A=x(x−1)(x−7)(x−8)A=x(x−1)(x−7)(x−8)
=[x(x−8)][(x−1)(x−7)]=[x(x−8)][(x−1)(x−7)]
=(x2−8x)(x2−8x+7)=(x2−8x)(x2−8x+7)
=(x2−8x)+7(x2−8x)=(x2−8x)+7(x2−8x)
Đặt a=x2+8xa=x2+8x => A=a2+7aA=a2+7a
Để A là số chính phương thì A=b2(b∈Z)A=b2(b∈Z)
⇒a2+7a=b2=4a2+28a+49−49−4b2=0⇒a2+7a=b2=4a2+28a+49−49−4b2=0
⇒(2a+7)2−(2b)2=49⇒(2a+7)2−(2b)2=49
⇒(2a+7+2b)(2a+7−2b)=49⇒(2a+7+2b)(2a+7−2b)=49
⇒2a+7+2b;2a+7−2b∈Ư(49)⇒2a+7+2b;2a+7−2b∈Ư(49)
⇒2a+7+2b;2a+7−2b∈{±1;±7;±49}⇒2a+7+2b;2a+7−2b∈{±1;±7;±49}
*còn lại bạn tự xét các trường hợp rồi chuyển lại a = x2 + 7x để tìm x nha.
CÁO TỪ