\(A=\frac{x^5+1}{x^3+1}\)     có giá trị là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

A = (x^5 + 1)/(x³ + 1) = x² + (1 - x²)/(x³ + 1)

= x² + (1 - x)/(x² - x + 1)

Để A nguyên thì B = (1 - x)/(x² - x + 1) nguyên 

=> Bx² + (1 - B)x + (B - 1) = 0

Để có nghiệm thì 

∆ = (1 - B)² - 4.B.(B - 1) ≥ 0

<=> 0 ≤ B ≤ 1

Thế vô làm tiếp

3 tháng 2 2019

dễ hiểu hơn nè

Ta có : để A là số nguyên thì x5 + 1 \(⋮\)x3 + 1

\(\Rightarrow\)x2 ( x3 + 1 ) - ( x2 - 1 )  \(⋮\)x3 + 1

\(\Rightarrow\)( x - 1 ) ( x + 1 ) \(⋮\)( x + 1 ) ( x2 - x + 1 )

\(\Rightarrow\)x - 1 \(⋮\)x2 - x + 1   ( vì x + 1 khác 0 )

\(\Rightarrow\)x ( x - 1 ) \(⋮\)x2 - x + 1 

\(\Rightarrow\)x2 - x  \(⋮\)x2 - x + 1 

\(\Rightarrow\)( x2 - x + 1 ) - 1 \(⋮\)x2 - x + 1 

\(\Rightarrow\)\(⋮\)x2 - x +  1

xét 2 trường hợp : 

n2 - n + 1 = 1 \(\Rightarrow\)n ( n - 1 ) = 0 \(\Rightarrow\)n = 0 ; n = 1

n2 - n + 1 = -1 \(\Rightarrow\)n2 - n + 2 = 0 ( vô nghiêm )

vậy x = 0 ; x = 1 thì A có giá trị là số nguyên

6 tháng 12 2020

Bài làm

\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

\(=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}-\frac{1}{x-2}\)

\(=\frac{x+2}{x+3}-\frac{5}{x\left(x+3\right)-2\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) x2 - 9 = 0 <=> ( x - 3 )( x + 3 ) = 0

<=> \(\orbr{\begin{cases}x=3\left(nhan\right)\\x=-3\left(loai\right)\end{cases}}\)

x = 3 => \(P=\frac{3-4}{3-2}=-1\)

c) \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

Để P đạt giá trị nguyên => \(\frac{2}{x-2}\)nguyên

=> \(2⋮x-2\)

=> \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x-21-12-2
x3140

Vậy ...

24 tháng 4 2017

10x^2 - 7x - 5 2x - 3 5x + 4 10x^2 - 15x - 8x - 5 8x - 12 7 -

Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên

\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)

\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }

Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)

           2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)

           2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)

           2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)

Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên 

16 tháng 12 2018

ĐKXĐ: \(x\ne1\)

\(A=\frac{5x+1}{x^3-1}-\frac{1-2x}{x^2+x+1}-\frac{2}{1-x}\)

\(A=\frac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(1-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{5x+1-x+1+2x^2-2x+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^2+4x+4}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4}{x-1}\left(x^2+x+1\ne0\right)\)

16 tháng 12 2018

b, ĐỂ x nhân giá trị nguyên 

\(\Rightarrow4⋮x-1\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Nếu : x - 1 = 1 => x = 2 

  x - 1 = -1 => x = 0 

x - 1 = 2 => x = 3 

.....

16 tháng 12 2019

Ta có :

\(A=\frac{x^3-x^2+2}{x-1}\)

\(A=\frac{x^2\left(x-1\right)+2}{x-1}\)

\(A=x^2+\frac{2}{x-1}\)

Để A có giá trị là 1 số nguyên

\(\Leftrightarrow\frac{2}{x-1}\inℤ\)

\(\Leftrightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x-11-12-2
x203-1

( thoả mãn ĐKXĐ )

Vậy ........

16 tháng 12 2019

\(\frac{x^3-x^2+2}{x-1}=x^2+\frac{2}{x-1}\)

Để \(x\in Z,A\in Z\Leftrightarrow x-1\inƯ\left(2\right)\)

\(Ư\left(2\right)\in\left\{\pm1;\pm2\right\}\)

x-121-2-1
x32-10

Vậy ........

26 tháng 8 2018

Ta có :\(\frac{X^3+X}{X-1}=\frac{X^2\left(X-1\right)+X\left(X-1\right)+2\left(X-1\right)+2}{X-1}\)

\(=X^2+X+2+\frac{2}{X-1}\)

Để E nguyên \(\Leftrightarrow\)\(\frac{2}{X-1}\)nguyên

\(\Leftrightarrow X-1\)thuộc ước của 2

\(\Leftrightarrow X-1\in\left\{-2,-1,1,2\right\}\)

Ta lập bảng

X-1-2-112
X-1023
XétCCCC

Vậy \(X\in\left\{-1,0,2,3\right\}\)

19 tháng 10 2018

a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)

Ta có bảng: 

2x + 1-5-115
x -3 -1 02

Do vậy \(x=\left\{-3;-1;0;2\right\}\)

19 tháng 10 2018

b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)

\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)

\(=x^2-5x+10+\frac{15}{x+2}\)

Để A nguyên

=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)

=> 15 chia hết cho x + 2

=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}

...

bn tự xét nha

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....