Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{-5}< \frac{x}{10}< \frac{1}{4}\)
\(\Rightarrow\frac{-8}{20}< \frac{2x}{20}< \frac{5}{20}\)
\(\Rightarrow-8< 2x< 5\)
\(\Rightarrow-4< x< 2,5\)
Vì \(x\inℤ\) nên \(x\in\left\{-3;-2;-1;0;1;2\right\}\)
b) \(-\frac{2}{3}< \frac{x}{8}< -\frac{1}{6}\)
\(\Rightarrow\frac{-16}{24}< \frac{3x}{24}< \frac{-4}{24}\)
\(\Rightarrow-16< 3x< -4\)
\(\Rightarrow3x\in\left\{-15;-12;-9;-6\right\}\)
\(\Rightarrow x\in\left\{-5;-4;-3;-2\right\}\)
| x - 1 | + | x + 3 | = 3 ( * )
xét : x - 1 = 0 => x = 1
x + 3 = 0 => x = -3
x - 1 < 0 => x < 1
x + 3 < 0 => x < -3
x - 1 > 0 => x > 1
x + 3 > 0 => x > -3
Lập bảng xét dấu,ta có :
x -3 1
x+3 - 0 + | +
x-1 - | - 0 +
nếu x < -3 thì * <=> : ( 1 - x ) + ( -3 - x ) = 3
1 - x + ( -3 ) - x = 3
-2x = 5
x = -5/2 ( loại )
nếu -3 \(\le\)x < 1 thì * <=> : ( 1 - x ) + ( x + 3 ) = 3
1 - x + x + 3 = 3
0x = -1 ( ko có GT x thỏa mãn )
nếu x \(\ge\)1 thì * <=> : ( x -1 ) + ( x + 3 ) = 3
x - 1 + x + 3 = 3
2x = 1
x = 1/2 ( ko có GT x thỏa mãn )
Vậy ko có GT x nào thỏa mãn bài trên.
a) 25 < 5n:5 < 625
52 < 5n:5 < 54
2 < n:5 < 4
=> n : 5 = 3
=> n = 15
b) 34 < \(\frac{1}{9}.27^n\)< 310
34 < \(\frac{27^n}{9}\)< 310
34 < 33n-2 < 310
=> 3n - 2 \(\in\) { 5 ; 6 ; 7 ; 8 ; 9 }
Nếu 3n - 2 = 5 thì n = 7/3 ( loại )
Nếu 3n - 2 = 6 thì n = 8/3 ( loại )
Nếu 3n - 2 = 7 thì n = 3 ( thỏa mãn )
Nếu 3n - 2 = 8 thì n = 10/3 ( loại )
Nếu 3n - 2 = 9 thì n = 11/3 ( loại )
Vậy n = 3
a) Liệt kê
x = {-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7}
Tính tổng là: -7+-6+-5+-4+.....+4+5+6+7
= (-7+7)+(-6+6)+(-5+5)+....+(-1+1)+0
= 0+0+0....+0
= 0
b) Liệt kê
x = {-5;-4;-3;-2;-1;0;1;2;3}
Tính tổng: -5+-4+-3+-2+-2+0+1+2+3
= (-3+3)+(-2+2)+(-1+1)+0+-5+-4
= 0+0+0+0+ -9
= -9
c) Liệt kê:
x = { -19;-18;-17;-16;....;18;19;20}
Tính tổng: -19+-18+-17+-16+....+15+16+17+18+19+20
= (-19+19)+(-18+18)+...+(-1+1)+0+20
= 0 + 0+...+0+20
= 20
*TÌM X:
a) 2x -35 = 15
2x = 15 + 35
2x = 50
x = 50 :2
x = 25
b) 3x + 17 = 2
3x = 17+2
3x = 19
x = 19 : 3
x = 6,33
c) /x-1/ = 0
\(\hept{\begin{cases}x-1=0\\x-1=-0\left(loai\right)\end{cases}}\)
Vậy x-1 = 0
x = 0 +1 = 1
\(\text{a) }\frac{\text{2}}{\text{-5}}< \frac{\text{x}}{\text{10}}< \frac{\text{1}}{\text{4}}\Rightarrow\frac{\text{-8}}{\text{20}}< \frac{\text{2x}}{\text{10}}< \frac{\text{5}}{\text{20}}\)
=> -8 < 2x < 5
=> 2x ∈ { -7 ; - 6 ; -5 ; -4 ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 }
=> x ∈ { -3 ; -2 ; -1 ; 0 ; 1 ; 2 } ( do x ∈ N )
\(\text{b) }\frac{\text{-2}}{\text{3}}< \frac{\text{x}}{\text{8}}< \frac{\text{-1}}{\text{6}}\Rightarrow\frac{\text{-16}}{\text{24}}< \frac{\text{3x}}{\text{24}}< \frac{\text{-4}}{\text{24}}\)
=> -16 < 3x < -4
=> 3x ∈ { -15 ; -14 ; -13 ; ... ; -2 ; -3 }
=> x ∈ { -5 ; -4 ; -3 ; -2 ; -1 }