Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ; -nếu y2 là số chẵn mà y là số nguyên tố =>y=2
=>x2 +117 =22 =4( vô lý)
=>y2 là số lẻ mà 117 là số lẻ =>x2 là số nguyên tố chẵn => x=2
thay vào ta có :
22 +117 =y2 =>121 = y2 =>112 =y2 =>y=11
vậy x=2 ; y=11
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126 Mà 126 = 2.\(3^2\).7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\)
Vậy: Hai số nguyên tố x,y là 2 và 11.
Đúng thì chọn mình nhé! Tốt nhất là bạn hãy thử lại nữa đấy!
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126. Mà 126 = 2.32.7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\).
Vậy: Hai số nguyên tố x,y là 2 và 11.
x2 + 117 = y2
Dễ thấy: y2 > 117
=> y > 10
Do y nguyên tố nên y lẻ => y2 lẻ
Mà x2 + 117 = y2 nên x2 chẵn => x chẵn
Mà x nguyên tố nên x = 2
Thay vào đề bài ta có: 22 + 117 = y2
=> 121 = y2 = 112
=> y = 11 (thỏa mãn)
Vậy x = 2; y = 11
x2 + 117 = y2
Dễ thấy: y2 > 117
=> y > 10
Do y nguyên tố nên y lẻ => y2 lẻ
Mà x2 + 117 = y2 nên x2 chẵn => x chẵn
Mà x nguyên tố nên x = 2
Thay vào đề bài ta có: 22 + 117 = y2
=> 121 = y2 = 112
=> y = 11 (thỏa mãn)
Vậy x = 2; y = 11
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
Do \(\left(2y+1\right)^2\) luôn lẻ
\(\Rightarrow x^2+117\) lẻ
\(\Rightarrow x^2\) chẵn
\(\Rightarrow x\) chẵn
Mà x là số nguyên tố \(\Rightarrow x=2\)
Thế vào pt ban đầu:
\(\left(2y+1\right)^2=117+2^2=121\)
\(\Rightarrow2y+1=11\)
\(\Rightarrow y=5\) là SNT (tm)
Vậy \(\left(x;y\right)=\left(2;5\right)\)