Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại số \(p\)thỏa mãn.
Ta đặt \(\frac{p^2-p-2}{2}=a^3\).
- \(p=2\)thỏa mãn.
- \(p>2\)do là số nguyên tố nên \(p\)lẻ.
Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).
+) \(p|a+1\): \(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).
Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)
\(\Leftrightarrow a=-1\)không thỏa.
+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).
\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)
\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1):
\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)
\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)
\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).
Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương.
Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)
\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)
Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)
\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).
Với \(k=3\): \(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).
Vậy \(p\in\left\{2,127\right\}\).
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)
Ta có : n^4+4
=n^4+4n^2+4-4n^2
=(n^2+2)^2-4n^2
=(n^2-2n^2+2)(n^2+2n^2+2)
={(n-1)^2+1}{(n+1)^2+1} #
lúc này có hai trường hợp xảy ra
*(n-1)^2+1=1-->(n-1)^2=0
--->n-1=0-->n=1
Thay vào # ta được: n^4+1=5(là số nguyên tố )
*(n+1)^2+1=1-->(n+1)^2=0-->n=-1(loại vì n là số tự nhiên
Vậy n=1 thì n^4+4=5 là số nguyên tố
nếu đúng thì k nha
Vì 1 luôn bằng 1. Nên ta thay x =1;p=0. Vào biểu thức ta có:
x=2p+1
=>1=2.0+1=0+1=1
Vậy x=1 khi p=0.
Do 2p là số chẵn nên 2p+1 là số lẻ
=>x3 là số lẻ
=>x là số lẻ
Đặt x=2a+1. Ta có:
(2a+1)3=2p+1
<=>8a3+12a2+6a+1=2p+1
<=>8a3+12a2+6a=2p
<=>2a(4a2+6a+3)=2p
<=>a(4a2+6a+3)=p
Mà p là số nguyên tố nên suy ra a=1.
=>x=2a+1=2.1+1=2+1=3
Vậy x=3
Đặt \(\hept{\begin{cases}2\left(p+1\right)=4x^2\\2\left(p^2+1\right)=4y^2\end{cases}}\)
\(\Rightarrow2\left(x-y\right)\left(x+y\right)=p\left(p-1\right)\)
Làm nốt. Xét từ nhân tử VT chia hết cho từng nhân tử VP là xong
câu 2 nề
A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)
vậy max A = 1 khi x= -1
Lời giải:
Đặt $7p+1=a^3$ với $a$ là số tự nhiên.
$\Leftrightarrow 7p=a^3-1=(a-1)(a^2+a+1)$
Đến đây có các TH:
TH1: $a-1=7; a^2+a+1=p$
$\Rightarrow a=8; p=73$ (tm)
TH2: $a-1=p, a^2+a+1=7$
$\Rightarrow a=2$ hoặc $a=-3$
$\Rightarrow p=1$ hoặc $p=-4$ (không thỏa mãn)
TH3: $a-1=7p; a^2+a+1=1$ (dễ loại)
TH4: $a-1=1; a^2+a+1=7p$ (cũng dễ loại)
Ta thấy :
\(2^3=7.1+1\left(p=1\right)\)
\(4^3=7.9+1\left(p=9\right)\)
\(8^3=7.73+1\left(p=73\right)\)
\(16^3=7.585+1\left(p=585\right)\)
\(32^3=7.4681+1\left(p=4681\right)\)
.....
\(\left(2k\right)^3=7.4681+1\left(p=2k\right)\) (k là số chẵn, k>=1)
\(\Rightarrow p\in\left\{1;9;73;585;4681...\right\}\)