Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
Bài 2 :
\(x^2+xy-2013x-2014y-2015=0\)
\(\Leftrightarrow x^2+xy-2014x-2014y+x-2014-1=0\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(2014x+2014y\right)+\left(x-2014\right)=1\)
\(\Leftrightarrow x\left(x+y\right)-2014\left(x+y\right)+\left(x-2014\right)=1\)
\(\Leftrightarrow\left(x-2014\right)\left(x+y\right)+\left(x-2014\right)=1\)
\(\Leftrightarrow\left(x-2014\right)\left(x+y+1\right)=1\)
Vì x, y là số nguyên dương \(\Rightarrow\hept{\begin{cases}x-2014\inℤ\\x+y+1\inℤ\end{cases}}\)
\(\Rightarrow\)\(x-2014\)và \(x+y+1\)là ước của 1
Lập bảng giá trị ta có:
\(x-2014\) | \(-1\) | \(1\) |
\(x+y+1\) | \(-1\) | \(1\) |
\(x\) | \(2013\) | \(2015\) |
\(y\) | \(-2015\) | \(-2015\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn đề bài là \(\left(2013;-2015\right)\)hoặc \(\left(2015;-2015\right)\)
a) \(p^2q+p⋮\left(p^2+q\right)\Rightarrow q\left(p^2+q\right)-\left(p^2q+q\right)=q^2-p\left(p^2+q\right)\)
\(pq^2+q⋮\left(q^2-p\right)\Rightarrow\left(pq^2+q\right)-p\left(q^2-p\right)=p^2+q⋮q^2-p\)
\(q^2-p=-\left(p^2+q\right)\Leftrightarrow q^2+q+p^2-p=0\left(VN\right)\)
\(q^2-p=p^2+q\Leftrightarrow\left(q+p\right)\left(q-p-1\right)=0\Leftrightarrow q-p-1=0\Leftrightarrow q=p+1\)
Mà p,q là 2 số nguyên tố nên p=2, q=3