Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
a)Để A là phân số
\(\Rightarrow n-2\ne0\Leftrightarrow n\ne2\)
b)Để \(A\in Z\)
\(\Rightarrow-5\)chia hết \(n-2\)
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{3;1;7;-3\right\}\)
a) de A la phan so thi n-2=1=>n=3
b)de A la so nguyen thi -5chia het cho n-2=>n-2 thuoc uoc cua -5={5,1,-1,-5}=>n=>{10,6,4,0} thi A la so nguyen
A là số nguyên khi
4n - 2 ⋮ n - 2
=> 4n - 8 + 6 ⋮ n - 2
=> 4(n - 2) + 6 ⋮ n - 2
=> 6 ⋮ n - 2
\(A=4n-2⋮n-2\)
\(\Rightarrow4n-8+6⋮n-2\)
\(\Rightarrow4(n-2)+6⋮n-2\)
Mà \(n-2⋮n-2\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ(6)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Đến đây dễ tìm
Ta có: Q = \(\frac{n^2-1}{2n-1}\)
=> 4Q = \(\frac{4n^2-4}{2n-1}=\frac{2n\left(n-1\right)+\left(2n-1\right)-3}{2n-1}=2n+1-\frac{3}{2n-1}\)
Để Q \(\in\)Z <=> 4Q \(\in\)Z <=> 3 \(⋮\)2n - 1
<=> 2n - 1 \(\in\)Ư(3) = {1; -1; 3; -3}
<=> n \(\in\){1; 0; 2; -1}
a: để P là số nguyên thì \(3n-3+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)
\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)
\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
a) Để A>0 thì \(\frac{n-20}{30}>0\) mà 30>0 nên n-20>0 hay n>20
b) \(1< A< 2\Leftrightarrow\frac{30}{30}< \frac{n-20}{30}< \frac{60}{30}\)
\(\Rightarrow30< n-20< 60\)
\(\Rightarrow50< n< 80\)( Cộng 3 vế với 20 )
c) Tương tự câu b :
\(\frac{15}{30}< \frac{n-20}{30}< \frac{30}{30}\Leftrightarrow15< n-20< 30\)
\(\Rightarrow35< n< 50\)
\(n\in\left\{36;37;...;49\right\}\)
Nên n có \(49-36+1\)số hạng hay n có 14 số hạng
Để A nguyên
=>n+7 chia hết cho n+2
Mà n+2 chia hết cho n+2
=>n+7-n+2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2E{-1;-5;1;5}
=>nE{-3;-7;-1;3}
Thử lại nx là đc
n+7/n+2 là số nguyên khi n+7chia hết cho n+2
ta có: n+7chia hết cho n+2
suy ra (n+2)+5 chia hết cho n+2
suy ra 5 chia hết cho n+2
N+2 thuộc ước của 5
còn sau đó bạn biết làm gì rồi đó
Để \(A = \dfrac{n}{n+2}\) là số nguyên .
=> \(n \vdots n+2\)
=> \(n-( n + 2 ) \vdots n + 2\)
=> \(-2 \vdots n + 2\) hay \(n + 2 \in\) Ư(-2 ) = { \(\pm1 ; \pm2 \) }
Lập bảng :
\(\begin{array}{|c|c|c|}\hline \text{n+2}&\text{1}&\text{-1}&\text{2}&\text{-2}\\\hline \text{n}&\text{-1}&\text{-3}&\text{0}&\text{-4}\\\hline \text{Kiểm tra }&\text{thỏa mãn }&\text{thỏa mãn }&\text{thỏa mãn }&\text{thỏa mãn }\\\hline\end{array}\)
Vậy \(x \in \) { \(0;-1;-3;-4\) }