K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

2A = (3+1)(3-1)(3^2+1)(3^4+1)...(3^64+1)

2A= (3^2-1)(3^2+1)(3^4+1)...(3^64+1)

Cứ tiếp tục như thế ta dc

2A= 3^128 -1

A = (3^128-1)/2

7 tháng 2 2020

chào bố :Đ

6 tháng 7 2019

Câu a) 

Em tham khảo link: Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath

Ta có bài toán

Pn-Pn-1=(n-1)Pn-1

Chứng minh

Ta có    Pn-Pn-1=n!-(n-1)!

                         =n(n-1)!-(n-1)!

                         =(n-1)(n-1)!=(n-1)Pn-1

=>Pn-Pn-1=(n-1)Pn-1

Từ kết quả trên ta có

P2-P1=(2-1)P1

P3-P2=(3-1)P2

...............

Pn=Pn-1=(n-1)Pn-1

-----------------------------

Pn-P1=P1+2P2+3P3+.........+(n-1)P1

=>1+1.P1+2P2+3P3+...+n.Pn=Pn+1