\(\frac{n^2+4}{n+1}\)có giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

\(\frac{n^2+4}{n+1}=\frac{\left(n^2+n\right)-\left(n+1\right)+5}{n+1}=\frac{n\left(n+1\right)-\left(n+1\right)+5}{n+1}=\frac{\left(n+1\right)\left(n-1\right)+5}{n+1}=n-1+\frac{5}{n+1}\)

=> \(\frac{n^2+4}{n+1}=n-1+\frac{5}{n+1}\)

=> Để phân số nguyên thì 5 phải chia hết cho n+1 => n+1=(-5,-1,1,5)

n+1 -5 -1 1 5
n -6 -2 0 4
Phân số -8 -7  5 4
14 tháng 3 2018

\(\frac{n^2+4}{n+1}=n-1+\frac{5}{n+1}\)

để phân số có giá trị nguyên thì \(5⋮n+1\)

\(\Leftrightarrow n+1\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)

n+11-15-5
n0-24-6
19 tháng 2 2018

Có n thuộc Z 

Có -8/n nguyên ( điều kiện để phân số tồn tại : n khác 0)

=> n thuộc Ư(-8)  ( vì n thuộc Z) => n thuộc {1;-1;2;-2;4;-4;8;-8}   (*)

Có 13/n-1 nguyên (điều kiện để phân số tồn tại : n khác 1)

=> n-1 thuộc Ư{13} ( vì n thuộc Z nên n-1 thuộc Z)

=> n-1 thuộc {1;-1;13;-13} => n thuộc {2;0;14;-12}   (2*)

Có 4/n+2 nguyên ( điều kiện để phân số tồn tại : n khác -2)

=> n+2 thuộc Ư(4) ( vì n thuộc Z nên n+2 thuộc Z )

=> n+2 thuộc {1;2;4;-1;-2;-4} => n thuộc {-1;0;2;-3;-4;-6}    (3*)

Từ (1*) ; (2*) và (3*) => n=2 ( thỏa mãn điều kiện n thuộc Z ; n khác 0; n khác 1; n khác -2)

Tích cho mk nhoa !!!!!! ~~~

NM
10 tháng 5 2021

Ta có 

\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay

\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)

10 tháng 5 2021

Để A có  giá trị nguyên

<=> 3n + 4 ⋮  n - 1

=> ( 3n - 3 ) + 7 ⋮  n - 1

=> 3 . ( n - 1 ) + 7 ⋮  n - 1

vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1 

=> n - 1 ∈  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-11-1-77
n20-68

mọi giá trị n đều thuộc z (chọn)

 Vậy x  ∈ { - 6 ; 0 ; 2 ; 8 }

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}

:D

26 tháng 2 2017

Do A có giá trị nguyên

\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)

Mà  \(n-1⋮n-1\)

\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+2-3n+3⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)

Xét \(n-1=-1\Rightarrow n=-4\)

\(n-1=-5\Rightarrow n=0\)

\(n-1=5\Rightarrow n=6\)

\(n-1=1\Rightarrow n=2\)

Vậy ...

26 tháng 2 2017

A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}

Ta có: n - 1 = 1 => n = 2

          n - 1 = -1 => n = 0

          n - 1 = 5 => n = 6

          n - 1 = -5 => n = -4

Vậy n = {2;0;6;-4}

10 tháng 7 2017

Phân số nguyên 

<=> n + 4 = n + 2 + 2 chia hết cho n + 2

<=> 2 chia hết cho n + 2

=> n + 2 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}

Còn lại , tự lập bảng xét giá trị của n 

10 tháng 7 2017

Ta có :  \(\frac{n+4}{n+2}=\frac{n+2+2}{n+2}=\frac{n+2}{n+2}+\frac{2}{n+2}=1+\frac{2}{n+2}\)

Để \(\frac{n+4}{n+2}\in Z\) thì 2 chia hết cho n + 2

=> n + 2 thuộc Ư(2) = {-2;-1;1;2}

Ta có bảng : 

n + 2-2-112
n-4-3-10
2 tháng 8 2015

=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1

=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1

\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)

=>     n - 1 = 1                   =>     n = 1 + 1 = 2

         n - 1 = -1                  =>     n = -1 + 1 = 0

         n - 1 = 3                   =>     n = 3 + 1 = 4

         n - 1 = -3                  =>     n = -3 + 1 = -2

 

=>               \(n\in\left\{-2;0;2;4\right\}\)

giải giúp mik nha

21 tháng 3 2019

a)ĐKXĐ:n \(\ne\)1

\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)

=>n-1 thuộc Ư(7)={1;-1;7;-7}

=>n ={2;0;8-6}

28 tháng 8 2020

đề sai à

26 tháng 12 2014

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}

25 tháng 7 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}