K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: n<>3

Để \(\dfrac{n-6}{n-3}\) là số nguyên thì \(n-6⋮n-3\)

=>\(n-3-3⋮n-3\)

=>\(-3⋮n-3\)

=>\(n-3\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{4;2;6;0\right\}\)

20 tháng 7 2019

a) Để \(A\inℤ\)

\(\Rightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)\)

\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)

Lập bảng xét các trường hợp : 

\(n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(2\)\(4\)\(0\)\(-2\)

Vậy \(n\in\left\{2;4;0\right\}\)

b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)\)

\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lập bảng xét các trường hợp ta có: 

\(n-6\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(n\)\(7\)\(5\)\(9\)\(3\)\(11\)\(1\)\(21\)\(-9\)

Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)

11 tháng 1 2017

Để \(\frac{3n+4}{n-1}\)là số nguyên thì:

\(3n+4⋮n-1\)

Mà \(3\left(n-1\right)⋮n-1\)

nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)

Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự

31 tháng 3 2021

\(M=\frac{6}{n-3}\)

a) Để M không là phân số

\(\Rightarrow n-3=0\)

\(\Rightarrow n=3\)

b) Để M là phân số và có giá trị nguyên

\(\Rightarrow n\ne3\)và \(6⋮n-3\)

\(6⋮n-3\)

\(n-3\in\left\{\pm6;\pm3;\pm2;\pm1\right\}\)

\(\Rightarrow n\in\left\{9;6;5;4;2;1;0;-3\right\}\)

31 tháng 3 2021

a)Để \(M=\frac{-6}{n-3}\)không phải là p/s thì n-3 = 0 => n=3 

Vậy nếu n=3 thì \(M=\frac{-6}{n-3}\)không phải là phân số.

b) Để \(M=\frac{-6}{n-3}\)là phân số thì \(n\ne3\), \(n\in Z\)và \(-6⋮n-3\)

\(-6⋮n-3\Leftrightarrow n-3\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Lập bảng 

n-31-12-23-36-6
n4351609-3

Vậy nếu \(n\in\left\{0;1;\pm3;4;5;6;9\right\}\),\(n\in Z\)Và \(n\ne3\)thì \(M=\frac{-6}{n-3}\)là phân số và có gtrị nguyên

2 tháng 4 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1 = - 1 => n = 0
  • Nếu n - 1 = 1 => n = 2
  • Nếu n -1 = 5 => n = 6

Vậy n thuộc -4 ;0 ;2 ; 6

2 tháng 4 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1 = - 1 => n = 0
  • Nếu n - 1 = 1 => n = 2
  • Nếu n -1 = 5 => n = 6

Vậy n thuộc -4 ;0 ;2 ; 6

28 tháng 2 2017

Để \(\frac{n+3}{n-2}\in Z\) thì n + 3 chia hết n - 2

=> n - 2 + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 thuộc Ư(5) = {-5;-1;1;5}

=> n = {-3;1;3;7}