Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>50x+50=0
=>50x=-50
=>x=-1
b: \(\Leftrightarrow5^{2x-1}=5^3\)
=>2x-1=3
=>2x=4
=>x=2
c: \(\Leftrightarrow3^{x-1}+6\cdot3^{x-1}=7\cdot3^6\)
=>3^x-1=3^6
=>x-1=6
=>x=7
a, 5-1x 25n = 125 d, 25 < 5n:5 < 625
5-1 x 52n = 53 52 < 5n:5 < 54
=> -1+2n=3 => n=4
=>2n = 3--1
=>2n=4
=>n =2
a,\(5^{-1}\times25^n=125 \)
= \(\frac{1}{5}\times25^n=125\)
= \(25^n=125\div\frac{1}{5}\)
= \(25^n=625\)
= \(25^n=25^2\)
\(\Rightarrow n=2\)
a. \(\Rightarrow5^{-1}.5^{2n}=5^3\)
\(\Rightarrow5^{2n-1}=5^3\)
=> 2n-1=3
=> 2n=4
=> n=2
b. \(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)
\(\Rightarrow\left(1+6\right).3^{n-1}=7.3^6\)
\(\Rightarrow7.3^{n-1}=7.3^6\)
=> n-1=6
=> n=7
c. \(\Rightarrow3^4<3^{-2}.3^{3n}<3^{10}\)
\(\Rightarrow3^4<3^{3n-2}<3^{10}\)
\(\Rightarrow3n-2\in\left\{5;6;7;8;9\right\}\)
\(\Rightarrow3n\in\left\{7;8;9;10;11\right\}\)
\(\text{Mà n là số nguyên}\Rightarrow n=3\).
d. \(\Rightarrow5^2<5^{n-1}<5^4\)
\(\Rightarrow n-1=3\)
\(\Rightarrow n=4\).
\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)
a) Câu này thiếu đề nhé bạn.
b) \(\frac{25}{5^n}=5\)
\(\Rightarrow5^n=25:5\)
\(\Rightarrow5^n=5\)
\(\Rightarrow5^n=5^1\)
\(\Rightarrow n=1\)
Vậy \(n=1.\)
c) \(\frac{81}{\left(-3\right)^n}=-243\)
\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)
\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)
\(\Rightarrow n=-1\)
Vậy \(n=-1.\)
e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)
\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
Chúc bạn học tốt!
d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}\)
\(\Rightarrow2^n=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Vậy \(n=6.\)
g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)
\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3.\)
h) \(5^{-1}.25^n=125\)
\(\Rightarrow5^{-1}.5^{2n}=5^3\)
\(\Rightarrow5^{-1+2n}=5^3\)
\(\Rightarrow-1+2n=3\)
\(\Rightarrow2n=3+1\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=4:2\)
\(\Rightarrow n=2\)
Vậy \(n=2.\)
k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)
\(\Rightarrow3^{n-1}.7=7.3^6\)
\(\Rightarrow n-1=6\)
\(\Rightarrow n=6+1\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
a) 5-1 . 25n = 125
1/5 . 25n = 125
25n = 125 : 1/5
25n = 625
25n = 252
=> n = 2
a) \(5^{-1}.25^n=125\)
\(\Rightarrow\frac{1}{5}.25^n=125\)
\(\Rightarrow25^n=125:\frac{1}{5}\)
\(\Rightarrow25^n=125.5\)
\(\Rightarrow25^n=625\)
\(\Rightarrow25^n=25^2\)
\(\Rightarrow n=2\)
Vậy n = 2