\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Khai triển: \(\left(x+y\right)^2+\left(xy-1\right)\left(x+y\right)+\left(xy-5\right)=0\).

Ta coi như là một phương trình bậc hai ẩn \(x+y\).

\(\Delta=\left(xy-1\right)^2-4\left(xy-5\right)=\left(xy-3\right)^2+12\)

Để phương trình có nghiệm nguyên thì \(\Delta\) chính phương, cộng với \(\left(xy-3\right)^2\) đã là một số chính phương.

Nghĩa là ta cần tìm 2 số chính phương hơn kém nhau 12 đơn vị. Đó là số 4 và 16.

Tức là \(\left(xy-3\right)^2=4\) (số chính phương nhỏ hơn)

Hay \(xy=5\) hoặc \(xy=1\).

Thử lại thì \(x=y=1\) hoặc \(x=y=-1\)

4 tháng 9 2016

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)

\(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\)\(\left[\begin{array}{nghiempt}x+y+xy=-6\\x+y+xy=4\end{array}\right.\)

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ\(\left\{\left(0;-6\right),\left(4;-2\right)...\right\}\)

Th còn lại giải tương tự

 

 

4 tháng 9 2016

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow1+x^2y^2+x^2+y^2+4xy+2\left(x+y\right)+2\left(x+y\right)xy=25\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(xy+1\right)=25\)

\(\Leftrightarrow\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)=25\)

\(\Leftrightarrow\left(x+y+xy+1\right)^2=25\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=\pm5\)

Dễ nhé tự lm tiếp

 

 

 

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)

26 tháng 4 2020

Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)

Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)

\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)

Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)

=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).

Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)

Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)

26 tháng 4 2020

Ta có:

\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:

\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)

\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)

3 tháng 9 2016

a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)

Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)

Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)

Vì x là nghiệm nguyên nên \(0\le x\le1\)

Do đó x = 0 hoặc x = 1

Nếu x = 0 thì  \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)

Nếu x = 1 thì y = -2 (nhận)

Vậy (x;y) = (1;-2)

3 tháng 9 2016

Đọc là "đen-ta" hay còn gọi là biệt thức. Bạn học sâu hơn về tam thức bậc hai (sách SGK 9 tập hai) để hiểu rõ hơn :)