Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}=\frac{2x+3y-5z}{6-12-35}\)=\(\frac{82}{-41}=-2\)
=> x = -6; y= 8; z= -14
b) từ 5x=6y và 3y=4z => \(\frac{x}{6}=\frac{y}{5};\frac{y}{4}=\frac{z}{3}\) => \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
ta có \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=\frac{x^2-y^2+z^2}{24^2-20^2+15^2}\)=\(\frac{401}{401}=1\)
=> \(x=24;y=20;z=15\)
a/ \(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}=\frac{2x+3y-5z}{6+\left(-12\right)-35}=\frac{82}{-41}=-2\)
Khi đó:\(\frac{2x}{6}=-2\Rightarrow x=-6;\frac{3y}{-12}=-2\Rightarrow y=8;\frac{5z}{35}=-2\Rightarrow z=-12\)
b/\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{24}=\frac{y}{20};3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
Đặt\(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=k\Rightarrow\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=k^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=\frac{x^2-y^2+z^2}{576-400+225}=\frac{401}{401}=1=k^2\Rightarrow k\in\left\{1;-1\right\}\)
Khi \(k=-1\)thì: \(\frac{x}{24}=-1\Rightarrow x=-24;\frac{y}{20}=-1\Rightarrow y=-20;\frac{z}{15}=-1\Rightarrow z=-15\)
Khi \(k=1\)thì: \(\frac{x}{24}=1\Rightarrow x=24;\frac{y}{20}=1\Rightarrow y=20;\frac{z}{15}=1\Rightarrow z=15\)
c)\(\frac{3x}{2}=\frac{2y}{3}=\frac{4z}{5}\Rightarrow\frac{3x}{24}=\frac{2y}{36}=\frac{4z}{60}\Rightarrow\frac{x}{8}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tính chất của tỉ lệ thức ta có: \(\frac{x}{8}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{8+18-15}=\frac{44}{11}=4\)
khi đó:\(\frac{x}{8}=4\Rightarrow x=32;\frac{y}{18}=4\Rightarrow y=72;\frac{z}{15}=4\Rightarrow z=60\)
Đặt k = \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
=> k2 = \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
=> k = -2;2
+ k = -2 thì \(\frac{x}{2}=-2\Rightarrow y=-4\)
\(\frac{y}{3}=-2\Rightarrow y=-6\)
\(\frac{z}{4}=-2\Rightarrow y=-8\)
+ k = 2 thì : \(\frac{x}{2}=2\Rightarrow y=4\)
\(\frac{y}{3}=2\Rightarrow y=6\)
\(\frac{z}{4}=2\Rightarrow y=8\)
Vậy ..............................
Ta có : \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\) (1)
\(\frac{y}{3}=\frac{z}{4}\Leftrightarrow4y=3z\Leftrightarrow z=\frac{4y}{3}\)(2)
thay (1) và (2) vào biểu thức \(^{x^2+y^2+z^2=116}\)ta được:
\(\left(\frac{2y}{3}\right)^2+y^2+\left(\frac{4y}{3}\right)^2=116\)
\(\Leftrightarrow\frac{4y^2}{9}+y^2+\frac{16y^2}{9}=116\)
\(\Leftrightarrow4y^2+9y^2+16y^2=1044\)
\(\Leftrightarrow29y^2=1044\)
\(\Leftrightarrow y^2=36\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
Với \(y=6\Rightarrow x=\frac{2.6}{3}=4;z=\frac{4.6}{3}=8\)
Với \(y=-6\Rightarrow x=\frac{2.-6}{2}=-4;z=\frac{4.\left(-6\right)}{3}=-8\)
=> x ; y z lần lượt là: {6 ; 4 ; 8) ; {-6 ; -4 ; -8}
Đặt \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)
Mà \(x^2+y^2+z^2=200\)
\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)
\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)
\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)
\(\Leftrightarrow kak^2.50=200\)
\(\Leftrightarrow kak^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)
+) Với \(kak=2\)thì \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)
+) Với \(kak=-2\)thì \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có : \(xyz=-30\)
\(\Leftrightarrow2k\times3k\times5k=-30\)
\(\Leftrightarrow30k^3=-30\)
\(\Leftrightarrow k^3=-1\)
\(\Leftrightarrow k=-1\)
Thay vào ta được :
\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)
Vậy ...
b,Vì \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\)=>\(\left(\frac{x}{3}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{5}\right)^2\)=> \(\frac{x^2}{3^2}=\frac{y^2}{7^2}=\frac{z^2}{5^2}\)=> \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\left(1\right)\)
Mà \(x^2-y^2+z^2=-60\left(2\right)\)
Từ (1)(2) Ta áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)(Vì\(x^2-y^2+z^2=-60\) )
Ta có \(\frac{x^2}{9}=4=>x^2=4.9=36=>x=+-\left(6\right)\)
\(\frac{y^2}{49}=4=>y^2=4.49=196=>y=+-\left(14\right)\)
\(\frac{z^2}{25}=4=>z^2=4.25=100=>z=+-\left(10\right)\)
Mặt khác x,y,z cùng dấu nên => \(\hept{\begin{cases}x=6;y=14;z=10\\x=\left(-6\right);y=\left(-14\right);z=\left(-10\right)\end{cases}}\)
Vậy........
k cho mình nha!!!
b/
Ta có \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\)=> \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\)
và \(x^2-y^2+z^2=-60\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)
=> \(\frac{x}{3}=4\)=> x = 12
=> \(\frac{y}{7}=4\)=> y = 28
=> \(\frac{z}{5}=4\)=> z = 20
\(y^2=xz;x^2=yt\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z};\dfrac{x}{y}=\dfrac{t}{x}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
Đặt:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)
Thay vào tính
Theo đề bài đã cho, ta có:
\(y^2\)=xz => \(\dfrac{x}{y}\)=\(\dfrac{y}{z}\) (1)
\(z^2\)=yt => \(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{x}{y}\)=\(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)=\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)
Mặt khác\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\) =\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3y^3z^3}{y^3z^3t^3}\)=\(\dfrac{x^3}{t^3}\)
Từđó ta suy ra \(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)= \(\dfrac{x^3}{t^3}\)
( bạn ghi sai đề nên mk đã sửa lại )