K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
24 tháng 2 2020
Ta có : \(D=4x^4+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)
\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)
\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)
Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)
Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Thử lại ta có \(D=1\) không là số nguyên tố
Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.
NT
0
\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)
\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)
Xét nốt các trường hợp là xong
Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm