Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n
Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn
suy ra 3m là lẻ
suy ra m là lẻ và n có thể là bất kì số nào(n,m thuộc N)
TH2
3n-1/2m là dương suy ra 3n-1 chia hết cho 2m
Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn
suy ra 3n là lẻ
suy ra n là lẻ và m có thể là bất kì số nào(n,m thuộc N)
vậy n,m là lẻ
Bình phương của số lẻ chia cho 4 dư 1: (2k + 1)² = 4k(k + 1) + 1 ♦
---------------
Ta cmr m + n và m² + n² không có chung ước nguyên tố lẻ. Thật thế giả sử m + n và m² + n² có chung ước nguyên tố lẻ p => p cũng là ước của (m + n)² - (m² + n²) = 2mn => p là ước của n (hoặc m) => p là ước của m (hoặc n) => m, n có ước chung p > 1, mâu thuẫn với giả thiết.
(m, n) = 1 => m, n không cùng chẵn. Ta xét 2 th
1. m, n cùng lẻ => m + n và m² + n² cùng chẵn. Mặt khác ♦ => m² + n² chia cho 4 dư 2, tức chỉ chia hết cho 2 => (m + n, m² + n²) = 2
2. m, n khác tính chẵn lẻ => m + n và m² + n² cùng lẻ => không có chung ước nguyên tố chẵn, và như trên đã chỉ ra chúng không có chung ước nguyên tố lẻ => (m + n, m² + n²) = 1
Ta có : m và n là các số nguyên dương
Và \(A=\frac{2+4+6+...+2m}{m}=\frac{2.\left(1+2+....+m\right)}{m}=\frac{2.\left(m-1\right).m}{m}=2.\left(m-1\right)\)
B = \(\frac{2+4+6+...+2n}{n}=\frac{2.\left(1+2+3+...+n\right)}{n}=\frac{2.\left(n-1\right).n}{n}=2.\left(n-1\right)\)
Mà A < B
Nên 2 . ( m - 1 ) < 2 . ( n - 1 )
Do đó m - 1 < n - 1
Và m < n
Vậy m < n
khổ qua hya là xem trên mạng ý