Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
=> \(1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)
=> \(1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)
=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)
=> \(\frac{1}{x+1}=0\Rightarrow x\in\varnothing\)
Bài làm :
Ta có :
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
\(\Leftrightarrow1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}=0\)
=> Không tồn tại x
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
\(\Rightarrow1+\frac{1}{2.3}.2+\frac{1}{3.4}.2+...+\frac{1}{x\left(x+1\right)}.2=2\)
=> \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=2\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x\left(x+1\right)}=1\)
=> \(1-\frac{1}{x+1}=1\)
=> \(\frac{1}{x+1}=0\Rightarrow0\left(x+1\right)=1\Rightarrow x\in\varnothing\)
\(\frac{1}{1.2:2}+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{x.\left(x+1\right):2}=2\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=2\)
\(2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\)
\(1-\frac{1}{x+1}=1\)
\(\frac{1}{x+1}=0\)
Vậy x vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.Ta có: \(\frac{x}{3}=-\frac{12}{9}\)
=> \(\frac{3x}{9}=-\frac{12}{9}\)
=> 3x = -12
=> x = -12 : 3
=> x = -4
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
=> \(\frac{4}{5}x=-\frac{1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{11}{10}\)
=> \(x=\frac{11}{10}:\frac{4}{5}\)
=> \(x=\frac{11}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 sai đề
Bài 2:
Có: \(\frac{1}{x}=\frac{y}{2}-1\)
\(\Rightarrow\frac{1}{x}=\frac{y-2}{2}\)
\(\Rightarrow x\left(y-2\right)=2\)
Bài2(tiếp): Vì x, y nguyên dương nên x=2;y-2=1 hoặc x=1; y-2=2
Xét: y-2=1
y=3
Suy ra: cặp (x;y) TM là (2:3)
Xét: y-2=2
y=4
Suy ra: cặp (x,y) TM là (1;4)
Vậy cặp số (x,y) TM là (2;3); (1;4)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. 32 = 25 => n thuộc tập 1; 2; 3; 4
b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)
\(\Rightarrow x=\frac{12}{11}\)
c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25
=> 52p+2015 chẵn
=> 20142p + q3 chẵn
Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2
=> 52p + 2015 = 20142p+8
=> 52p+2007 = 20142p
2014 có mũ dạng 2p => 20142p có dạng B6
=> 52p = B6 - 2007 = ...9 (vl)
(hihi câu này hơi sợ sai)
d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\), \(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
\(\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)