Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(a;b;c\) là số nguyên dương
\(\Rightarrow3abc>0\)
\(\Rightarrow a^3>b^3\Rightarrow a>b\)
Và \(a^3>c^3\Rightarrow a>c\)
\(\Rightarrow2a>b+c\)
\(\Rightarrow4a>2.\left(b+c\right)\)
\(=a^2\)
\(\Rightarrow4>a\)
\(2.\left(b+c\right)\) là số chẵn
\(\Rightarrow a^2\) là số chẵn
\(\Rightarrow a\) là số chẵn
\(\Rightarrow a=2\)
Vì \(b;c< 2=a\) và \(b;c\) là các số nguyên dương
\(\Rightarrow b=c=1\)
Vậy: \(a=2;b=1;c=1\)
Ta có:
a3 + a.32 + 5=5b2
<=> a2.(a+3)+5=5.b2
<=> a2.5c+5=5.b2
<=> a2.5c-1+1=5.b2-1
=> b-1=0.r.c-1=0
Nếu b-1=0 thì thạy vào không thỏa mãn
nếu c-1=0 thì c=1 suy ra a=2 và b=2
a3+3a2+5=5b
=>a2(a+3)+5=5b
=>a2.5c+5=5b
=>5c<5b
=>5b chia hết cho 5c
=>5b chia hết cho a+3
=>a2(a+3)+5 chia hết cho a+3
=>5 chia hết cho a+3
..v..v..
=>a=2;c=1;b=2
|
Do a thuộc Z + => 5b = a3 + 3a2 + 5 > a + 3 = 5c => 5b > 5c => b>c => 5b 5c => (a3 + 3a2 + 5) ( a+3) => a2 (a+3) + 5 a + 3 |
|
Mà a2 (a+3) a + 3 [do (a+3) (a+3)] => 5 a + 3 => a + 3 Î Ư (5) |
0.5 đ |
|
=> a+ 3 Î { ± 1 ; ± 5 } (1) Do a Î Z+ => a + 3 ³ 4 (2) Từ (1) và (2) => a + 3 = 5 => a = 5 – 3 =2 |
|
|
=> 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1
|
0.5 đ |