Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có
abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4
abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5
bc=-15 mà c=5 suy ra b=-3
ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2
b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6
suy ra a+b+c = 3 mà a+b= -1 suy ra c=4
suy ra a=6-4=2; b=1-4 = -3
c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30
suy ra a+b+c+d= -10
mà a+b+c = -6
suy ra d=-4
nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1
suy ra a=-6, b= 3, c= 2
a, d=-4 c=5 b=-3 a=2
b, c=4 a=2 b=-3
c, d=-4 a=-1 c=-3 b=-2
abcd = 120 => d = 120 : (abc) = 120 : 30 = 4
c = (abc) : (ab) = 30 : (-6) = -5
=> b = (bc) : c = -15 : (-5) = 3
a = (ab) : b = -6 : 3 = -2
Theo đề ra ta có :
\(\left(x+1\right)ỹz-xyz=2\)
\(\Rightarrow xyz+yz-xyz=2\)
\(\Rightarrow yz=2\)
Mà x ; y ; z nguyên .
\(\Rightarrow\left[\begin{array}{nghiempt}y=1;z=2\\y=2;z=1\end{array}\right.\)
Nhận xét mọi x nguyên thỏa mãn
Vậy x là số nguyên ; y=1 ; z = 2 và x là số nguyên ; y = 2 ; z = 1
Thêm 1 vào x thì x tăng thêm 2 đơn vị nên ta có:
(1 + x)yz = xyz + 2
yz + xyz = xyz + 2
=> x là số nguyên tùy ý
yz = 2 = 1 . 2 = 2 . 1 = -1 . (-2) = -2 . (-1)
Vậy ta có :
\(\begin{cases}x\in Z\\y=1\\z=2\end{cases}\) ; \(\begin{cases}x\in Z\\y=2\\z=1\end{cases}\) ; \(\begin{cases}x\in Z\\y=-1\\z=-2\end{cases}\) ; \(\begin{cases}x\in Z\\y=-2\\z=-1\end{cases}\)
Ta có : xyz = a => \(x=\frac{a}{yz}\)
(x+1)yz = a+2 => \(\left(x+1\right)=\frac{a+2}{yz}\) = \(\frac{a}{yz}+\frac{2}{yz}\)
= > (x+1) - x = \(\left(\frac{a}{yz}+\frac{2}{yz}\right)-\frac{a}{yz}\)
= > 1 = \(\frac{2}{yz}\)
= > yz = 2
Do yz = 2 nên x \(\in\) Z