K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 


 

22 tháng 10 2016

Đặt \(p=2k+1\)( phụ chú : vì p là số nguyên tố lẻ )

 \(x=a-b-c\)

\(y=b-c-a\)

\(z=c-a-b\)

\(\Rightarrow-\left(x+y+z\right)=a+b+c\)

\(\Rightarrow B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)

\(=\left(x^{2k+1}+y^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-z^{2k+1}\right]\)

\(=\left(x+y\right)\left(x^{2k}-x^{2k-1}y+....+y^{2k}\right)-\left(x+y\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}z+...+z^{2k}\right]\)chia hết cho \(x+y=-2c\)

\(\Rightarrow B\text{⋮}c\)

Tiếp, lại có :

\(B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)

\(=\left(x^{2k+1}+z^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-y^{2k+1}\right]\)

\(=\left(x+z\right)\left(x^{2k}-x^{2k-1}z+...+z^{2k}\right)-\left(x+z\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}y+...+y^{2k}\right]\)chia hết cho \(x+z=-2b\)

\(\Rightarrow B\text{⋮}b\)

CMTT, có \(B\text{⋮}a\)

Mà \(a,b,c\)đôi một nguyên tố cùng nhau ( GT )

\(\Rightarrow B\text{⋮}abc\)

Vậy ...

18 tháng 9 2019

1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7 2024

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

8 tháng 12 2021
Xin lỗi nha mik cũng chịu tự nhiên lướt ngang qua lại thấy 😅
8 tháng 12 2021

5676538564875x787866688089=bao nhieu mn oi

9 tháng 5 2018

Mọi người giúp em vs!! e cần gấp lm!! thankiu trc ak!!!

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)