\(\left(x+2\right)^2+\left(y-3\right)^4+\left(z-5\right)^6=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

(x+2)^2>0

(y-3)^4>0

(z-5)^6>0

=>(x+2)^2+(y-3)^4+(z-5)^6>0

mà theo đề:(x+2)^2+(y-3)^4+(z-5)^6=0

=>(x+2)^2=(y-3)^4=(z-5)^6=0

+)(x+2)^2=0=>x+2=0=>x=-2

+)(y-3)^4=0=>y-3=4=>y=7

+)(z-5)^6=0=>z-5=0=>z=5

vậy...

nhớ tick

3 tháng 3 2016

x=2

y=3

z=5

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)=\frac{15}{2}\)

\(y\left(x+y+z\right)=\frac{-5}{2}\)

\(z\left(x+y+z\right)=20\)

=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)

                                               \(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=\frac{10}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=5+20\)

                                                                     \(\left(x+y+z\right)^2=25\)

=>x+y+z=5 hoặc x+y+x=-5

Với x+y+z=5

=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)

   \(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)

   \(z.5=20\)=>\(z=\frac{20}{5}=4\)

Với x+y+z=-5

=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)

   \(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)

   \(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)

Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\)\(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)

\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)

Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).

8 tháng 6 2017

Cộng theo từng vế ta được:
\(\left(x+y+z\right)^2=9\)\(\Rightarrow x+y+z=\pm3\)
Nếu \(x+y+z=3\) thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).
Nếu \(x+y+z=-3\) thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

29 tháng 7 2017

Cộng theo từng vế ta được :

\(\left(x+y+z\right)^2=9\Rightarrow x+y+z=\pm3\)

Nếu \(x+y+z=3\)thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).

Nếu\(x+y+x=-3\)thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

26 tháng 5 2017

\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)

Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3

TH1: x+y+z=-3 

Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3

x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3

TH2: x+y+z=3

Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3

x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3

Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3

26 tháng 5 2017

Theo đề ra ta có:

\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)

\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)

10 tháng 6 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)

\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)

Ta có :  \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)

\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)

Vậy : x= 6 ; y = 10 ; z = 14

18 tháng 8 2015

\(\Rightarrow\left(x+2\right)^2=0\Rightarrow x+2=0\Rightarrow x=-2\)

\(\left(y-3\right)^4=0\Rightarrow y-3=0\Rightarrow y=3\)

\(\left(z-5\right)^6=0\Rightarrow z-5=0\Rightarrow z=5\)

18 tháng 8 2015

Ta có:

\(\left(x+2\right)^2\ge0;\left(y-3\right)^4\ge0;\left(z-5\right)^6\ge0\)

=> để: \(\left(x+2\right)^2+\left(y-3\right)^4+\left(z-5\right)^6=0\)

=>  x + 2 = 0  ; y - 3 = 0  và   z - 5 = 0

=>  x = -2       ;  y = 3     và     z = 5