K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LM
0
29 tháng 10 2016
Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ
Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ
Lấy (2) - (1) và (2) + (1) ta được
\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ
\(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)
\(\Leftrightarrow\sqrt{2-\sqrt{3}}=\sqrt{3x}-\sqrt{y}\Leftrightarrow2-\sqrt{3}=3x+y-2\sqrt{3xy}\)
\(\Leftrightarrow3x+y-2=2\sqrt{3xy}-\sqrt{3}\)(1)
Để phương trình đầu có nghiệm hữu tỉ=> phương trình (1) có nghiệm hữu tỉ x,y
\(\Rightarrow\hept{\begin{cases}2\sqrt{3xy}-\sqrt{3}=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{xy}-1=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=\frac{1}{4}\\y=2+3x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(2-3x\right)=\frac{1}{4}\\y=2-3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12x^2-8x+1=0\\y=2-3x\end{cases}}\)
phân tích thành nhân tử r làm tiếp nhé