Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
đặt \(a=1-\sqrt{2}\),ta có
\(1-a=\sqrt{2}\)\(\Rightarrow\left(1-a\right)^2=2\)
\(\Rightarrow a^2-2a+1=2\Rightarrow a^2-2a-1=0\)
\(\Rightarrow x^2-2x-1=0\)nhận \(1-\sqrt{2}\)là nghiệm
\(\Rightarrow b=-2;c=-1\)
giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)
\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)
Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)
\(\Rightarrow17a+3b+c=6a+b=0\)
\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)
Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)
pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)
Ta có \(\Delta=b^2-4ac=\left(a+c\right)^2-4ac=\left(a-c\right)^2\)
\(\Rightarrow x_1=\frac{-b+a-c}{2a};x_2=\frac{-b-a+c}{2a}\in Q.\)
Lời giải:
Rút gọn \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Gọi $x_0$ là một nghiệm nữa của pt đã cho (chưa cần biết phân biệt hay không).
Theo định lý Viete ta có: \(\left\{\begin{matrix} 4-\sqrt{15}+x_0=\frac{-b}{a}(1)\\ (4-\sqrt{15})x_0=\frac{1}{a}(2)\end{matrix}\right.\)
\((2)\Rightarrow x_0=\frac{1}{a(4-\sqrt{15})}=\frac{4+\sqrt{15}}{a}\)
Thay vào (1):
\(4-\sqrt{15}+x_0=4-\sqrt{15}+\frac{4+\sqrt{15}}{a}=\frac{-b}{a}\)
\(\Leftrightarrow a(4-\sqrt{15})+4+\sqrt{15}=-b\)
\(\Leftrightarrow (a-1)(4-\sqrt{15})=-b-8\)
Ta thấy vế phải là một số hữu tỉ nên vế trái cũng là số hữu tỉ
Mà \((a-1)(4-\sqrt{15})\) là tích một số hữu tỉ nhân một số vô tỷ, để kết quả là một số hữu tỉ thì \(a-1=0\Rightarrow a=1\)
\(\Rightarrow b=-8\)
Vậy \((a,b)=(1,-8)\)
x=(√5-√3)/(√5+√3)=(4-√15
a=0
x=1/b; b €Q=>1/b€Q=> 1/b≠4-√15=> a≠0
x=(-b±√∆)/(2a)=-b/(2a)±√∆/(2a)
x1=(4-√15)
a,b€Q=> -b/(2a)=4
√(b^2-4a)/(2a)=√15
16a^2-a=15a^2
a(a-1)=0
a≠0; a=1
a=1=> b =-8
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
\(x=\sqrt{31-8\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)^2}=4-\sqrt{15}\)
Biểu thức nghịch đảo của x là \(\dfrac{1}{4-\sqrt{15}}=4+\sqrt{15}\)
\(\Rightarrow x=4\pm\sqrt{15}\) là nghiệm PT \(x^2+bx+c\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}S=x_1+x_2\\P=x_1x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=8\\P=1\end{matrix}\right.\) (x1 và x2 là nghiệm của (1))
Áp dụng Viet đảo thì x là nghiệm của PT \(x^2-8x+1\)
Vậy \(b=-8;c=1\)
kiểu x là nghiệm của pt thì 1/x cx là nghiệm của pt hả anh ?